NANO 703/703L – Fall 2016 Homework 1 Due: F-9/9, 10:00 AM

Numerical answers should be stated with appropriate units and significant figures.

1) Are there any advantages to using high-energy electrons instead of visible light to image nanomaterials? Explain.

2) These questions involve the wavelength λ of electrons accelerated to relativistic energy *E*.

a) Write a formula for λ .

b) Compute λ (in nm) for the energies listed below:		
i) 78 KeV	ii) 4.1×10^2 KeV	iii) 1.96 MeV
Express your answers with appropriate significant figures.		

3) Express the following lengths in units of nm: a) 5.8×10^{-6} in b) $0.082 \ \mu m$ c) 66 Å

d) the distance light travels in a vacuum in 1.05 fs. (1 fs = 10^{-15} s)

4) These questions involve angles and solid angles.

a) Find the angle θ (in rad) subtended by an arc of length $\ell = 0.51$ mm with radius of curvature R = 9.3 mm.

b) Find the solid angle Ω (in srad) subtended by a solid arc of surface area $A = 8.0 \text{ cm}^2$ with radius of curvature R = 72 cm.

5) The interference pattern at small angles from two narrow slits using a parallel electron beam of wavelength $\lambda = 0.77$ nm shows an angular splitting between fringes of $\Delta \theta = 5.9$ mrad. Find the slit separation *d* (in nm).

6) A beam of electrons (with unspecified energy) is partially transmitted through a thin In foil.

a) From a reliable source, find the mass density (at room temp.) and molar mass of In. Calculate the density of atoms n (in atoms/cm³, or just cm⁻³) for In.

b) For a foil of thickness T = 87 nm, the transmitted electron beam has 58% of the incident-beam intensity. Determine the mean free path length Λ (in nm) for scattering in In (at this energy).

c) Determine the total atomic scattering cross section σ_0 for a In atom at this energy. Use appropriate units.