Use Excel or another program for repeated calculations. Pay attention to units.

1) A cylindrical magnetic lens has uniform field along the lens axis ( $-a \leq z<a$ ), with no field extending outside the bore. The strength of the lens is given by $k a=3 \pi / 13$. Assume $a=1.00 \mathrm{~cm}$. Find:
a) the focal length $f$ (in cm).
b) the rotation angle $2 \phi(a)$ [in $\operatorname{deg}\left({ }^{\circ}\right)$ ] of the image with respect to the object.
2) A TEM is equipped with a three-lens condenser system, with the three thin, ideal lenses equally spaced by $L=12.0 \mathrm{~cm}$. The first crossover (source) is formed by C 1 at $P=8.0 \mathrm{~cm}$ above C 2 . The final image (probe) is formed at $Q=4.0 \mathrm{~cm}$ below C3. Find the following:
a) The net magnification $M$ with C2 off;
b) The focal length $f_{3}$ of C3 with C2 off;
c) The focal length $f_{2}$ of C 2 , such that $M^{\prime}$ (the net magnification with C 2 on) is $10 \%$ of $M$ [the net magnification with C 2 off, from (a), i.e., $M^{\prime}=r \cdot M$, where $r=0.10$ ].
d) The focal length $f_{3}$ of C 3 for the condition in c).
3) The basis lattice vectors in direct space for a particular crystal are given (in Cartesian coordinates) by: $\mathbf{a}_{1}=(0.40 \hat{\mathbf{x}}) \mathrm{nm} \quad \mathbf{a}_{2}=(0.20 \hat{\mathbf{x}}+0.30 \hat{\mathbf{y}}) \mathrm{nm} \quad \mathbf{a}_{3}=(0.60 \hat{\mathbf{z}}) \mathrm{nm}$
Find the following:
a) The volume of the unit cell.
b) The three lattice constants $a_{1}, a_{2}$, and $a_{3}($ in $n m)$ and the three angles $\alpha_{1}, \alpha_{2}$, and $\alpha_{3}\left(\right.$ in $\left.^{\circ}\right)$ between the basis vectors $\left(\mathbf{a}_{i} \cdot \mathbf{a}_{j}=a_{i} a_{j} \cos \alpha_{k}\right.$, for $i \neq j \neq k \neq i$ ).
c) The reciprocal-lattice basis vectors $\mathbf{b}_{1}, \mathbf{b}_{2}$, and $\mathbf{b}_{3}$.
d) The lengths of the following vectors: i) [3 $\overline{3} 1]$ and ( $3 \overline{3} 1$ ) (with appropriate units).
e) The angle between the vectors in d).

Please clearly show work leading to your answers.
4) For electrons with energy $2.4 \times 10^{2} \mathrm{KeV}$. Find:
a) The radius of the Ewald sphere;
b) The volume of the Ewald sphere.

Assume the beam is tilted by $\theta=12.0 \mathrm{mrad}$ from the normal to the ZOLZ of a crystal. Find:
c) The diameter of the circular intersection of the Ewald sphere with the ZOLZ.

