NANO 703/703L
Homework 4
Due: W-11/9, 10:00 AM

1) Pure Cr has the bcc structure, with a lattice constant of $a=0.291 \mathrm{~nm}$.

The electron-scattering amplitude (form factor) at scattering parameter $s=g / 2$ is approximately:

$$
f(s)=A \mathrm{e}^{-B s}
$$

The coefficients for this element at 200 KeV are $A=0.921 \mathrm{~nm}, B=0.335 \mathrm{~nm}$.
The Fourier components of the structure function are $U_{h k l}=F_{h k l} /(\pi v)$, where v is the unit-cell volume.
The extinction distance is $\xi_{h k l}=1 /\left(\lambda U_{h k l}\right)$.
Create a table as shown below containing values for each reflection in the first column:

$h k \ell$	i) $g_{h k l}\left(\mathrm{~nm}^{-1}\right)$	ii) $f(s)(\mathrm{nm})$	iii) $\left\|U_{h k l}\right\|\left(\mathrm{nm}^{-2}\right)$	iv) $\left\|\xi_{h k l}\right\|(\mathrm{nm})$
a) 110				
b) 200				
c) 211				

Please show work and organize your answers.
2) A reflection g has extinction distance $\xi=78 \mathrm{~nm}$ and excitation error $s=0.0083 \mathrm{~nm}^{-1}$. Assuming a two-beam condition, find the thickness T (in nm) for the first maximum in the diffracted intensity for g.
3) A CBED pattern is acquired from a sample of thickness $T=97 \mathrm{~nm}$, using a two-beam condition for reflection g, where $\xi_{\mathrm{g}}=82 \mathrm{~nm}$. Is the central $(s=0)$ portion of the CBED disk for g a local intensity minimum, or a maximum?
4) PbSe has the NaCl (rocksalt) structure, having cubic lattice parameter $a=0.58 \mathrm{~nm}$. A CBED pattern is acquired along the [221] zone axis, using a $200-\mathrm{KeV}$ electron beam, and a semi-angle of convergence $\alpha=3.7 \mathrm{mrad}$. Is this a Kossel-Mollenstadt pattern, or a Kossel pattern? Explain.
5) A selected-area diffraction pattern is acquired at 200 KeV from a cubic crystal with $a=0.29 \mathrm{~nm}$ oriented such that the 422 (excess) Kikuchi line passes at a radial distance $x=-0.098 \mathrm{~nm}^{-1}$, where the negative value indicates a position inside the 422 reflection.
a) Estimate the excitation error of this reflection.
b) Determine the minimum change in tilt angle (in rad) from this initial orientation needed to obtain a twobeam condition for this reflection. (Use $\Delta \phi=\phi_{f}-\phi_{i}$, where $\phi_{f}=g / 2 k$.)

