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Lab: TEM Diffraction Calibration 

Due: Following Lab Session 
 
BACKGROUND 
We previously demonstrated that the magnification 
in the plane of the CCD is proportional to that on 
the viewing screen. The calibration constant C is 
equivalent to the size of a CCD pixel projected 
upward onto the plane of the viewing screen. This 
constant is valid whenever the final image diverges 
from the crossover below the projector lens. 
 
In diffraction mode, the excitation of the 
intermediate lens is reduced, so that the projector 
lens (PL) projects the diffraction pattern formed in 
the back focal plane of the objective lens (OL), 
rather than the sample image. Comparable 
excitation of the projector lens is used in imaging 
and diffraction mode, so C remains unchanged, but 

can be expressed with units appropriate for 
diffraction. 
 
Diffraction causes electrons to deviate from the 
direction of the incident, or direct, beam, labeled 0. 
A particular set of lattice planes, with spacing d, 
identified by its Miller indices ( )hk , using an 
electron wavelength λ, gives rise to a diffracted 
beam (reflection) g at an angle 2 Bθ  from the 
incident beam direction. Bragg's Law states: 

 2sin B d
λ

θ =  

In a traditional diffraction experiment, conducted 
without the use of electron lenses, a pattern is 
observed at a camera length L from the sample, 
producing diffracted beams that impinge on film or 
a detector at a radius R from the direct beam. The 
diffraction pattern scales with L, which allows a 
simple geometric analysis of the diffraction 
pattern. 
 
In the TEM, notice that the vertical position of the 
sample does not move when we adjust the camera 
length. Rather, the lenses magnify the pattern by 
expanding the angles made by the various 
diffracted beams from the optic axis. Thus, L refers 
to the point from which the diffraction spots appear 
to diverge, but does not represent a physical 
distance in the TEM. In fact, L can vary from as 
little as 20 cm to as large as 100 m. 
 
The electron wavelength in vacuum is a function of 
the incident beam energy. In high-energy TEM, λ 
is almost always much less than the d-spacing of 
the observed reflections. Thus, we can write 

 ( )2sin 2 tan tan 2B B B
R
L
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We have derived a useful relationship: 
 Rd L= λ  (1) 
Scattering from a single crystal produces a discrete 
set of diffracted beams. Using parallel 

 
Fig.: Simplified ray diagram showing the camera 
lengths for the screen and CCD.  



illumination, this gives rise to sharp spots in the 
diffraction pattern. The symmetry of the pattern is 
directly related to the crystal orientation. 
 
For a powder sample, with many randomly 
oriented crystallites, continuous diffraction rings 
are observed, and the pattern has essentially no 
dependence on sample orientation. In either case, 
the diffracted spots or rings are labeled by their 
Miller indices as hk  (without parentheses).  
 
Magnification Factor 
The geometric description we developed for 
imaging on the CCD is also valid for diffraction. 
Just as in imaging mode, the depth-of-focus of a 
diffraction pattern is quite large, so the focus of a 
pattern on the viewing screen is almost identical to 
that in the plane of the CCD, and the scale of the 
pattern on the CCD is proportional to that on the 
viewing screen. 
 
For a diffracted beam incident at a screen radius  

0R , the corresponding radius 1R  on the CCD is: 
 1 0R F R= ⋅  
where F is the same magnification factor 
previously measured in imaging mode. 
 
Similarly, for an indicated camera length of 0L , the 
camera length on the CCD is 1L , where 

 1 0L F L= ⋅  
Thus, the indicated camera length 0L  can be used 
to calibrate diffraction patterns on the CCD. 
 
Diffraction Constant 
The radius 1R  on the CCD of a diffraction ring will 
span a number of pixels n, such that 
 1R n P= ⋅  
where P is the effective pixel size. We have 
 1 0n P d L F L⋅ ⋅ = λ ⋅ = λ ⋅ ⋅  
We can express this proportionality as: 

 0
1n d L
C

 ⋅ = ⋅ λ ⋅ 
 

 (2) 

The product 0Lλ ⋅  is called the camera constant. 
Useful units for 1 C  are: 

 1 pix
mmC

  =  
 

Note that C  is the same quantity we determined by 
image calibration—the size of a CCD pixel 
projected onto the viewing screen. 
 
For example, the d-spacing of lattice planes 
measured from a diffraction ring of radius n (in pix) 
at indicated camera length 0L  is: 

 01 L
d

C n
λ ⋅ = ⋅ 

 
 

 

 
GOAL 
In this experiment, we will use an evaporated aluminum standard, which has a broad distribution of of 
diffraction rings with known d-spacings provided by the manufacturer. 
 
PROCEDURE 
1) Create a table of measurements, as shown below: 
 

E (KeV) L0 (mm) 1 d  (nm-

1) 
n (pix) λ (nm) ( )0  nm mmLλ ⋅ ⋅  ( ) pix nmn d⋅ ⋅  

. . . . . . . 
       
       

 



2) Repeat the following procedure for various microscope settings: 
 
a) Select a beam energy E (in KeV). Compute λ (in nm). 
 
b) Select a camera length 0L  and record (in mm). 
 
c) Measure n  (in pix) for various values of 1 d  (in nm-1). Record the results in the table. 
 
Tips: 
It is often difficult to determine the center of the diffraction rings. For best accuracy, one should measure 
the ring diameters 2n whenever possible. 
 
At larger camera lengths, only a portion of a ring may be detectable in a single CCD exposure. In these 
cases, one can measure the difference in radius between two rings 1 and 2, taking the difference 

 
1 2

1 1 1
d d d

= − , 

where ring 2 has the smaller diameter. 
 
d) Save the diffraction patterns and transfer to the network drive. 
 
REPORT 
Using the data in step 3, perform the following: 
1) Plot n d⋅  vs. 0Lλ ⋅  and fit the curve to the function y a x= ⋅ . Record the slope 1a C= . 
 
2) Record 1 C  in units of pix mm . 
 
3) Evaluate C. Convert C to units of m pixµ . Compare to the value from the TEM Magnification 
Calibration Lab. 
 
Submit a lab report describing the experimental procedure, which contains all raw data and result. 
 


