Illumination (Condenser) System

Functions:

- 1) Demagnify source (C1 Spot Size)
- 2) Focus beam on sample with sufficient intensity
- 3) Vary probe size with magnification
- 4) Allow control of illuminated area (C3)

Demagnification requires increasing angular magnificaiton

Convergence angle and probe size

•Convergence angle decreases with decreasing CA size •Probe size decreases with increasing C1 excitation

smaller α

smaller probe

Uses of additional condenser lenses

Condenser mini-lens (CM) allows larger convergence anglesC2 lens allows smaller probe sizes

larger α

smaller probe

Demagnification with C2 on vs. C2 off

Diagram above shows two lens settings giving the same probe size.

Comparison: C2 off vs. C2 on

 $\begin{array}{ccc} C2 & On \\ q_2 + p_3 = L \\ p_2 = P \\ q_3 = Q \end{array} \qquad \qquad \begin{array}{ccc} p_3 = P + L \\ p_3 = P \\ q_3 = Q \end{array}$

$$\frac{1}{f_2} = \frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{P} + \frac{1}{q_2}$$
$$M_2 = \frac{q_2}{p_2} = \frac{q_2}{P} = \frac{1}{\frac{P}{f_2} - 1}$$

$$M_{3} = \frac{q_{3}}{p_{3}} = \frac{Q}{L - q_{2}} = \frac{Q}{L - \left(\frac{1}{\frac{1}{f_{2}} - \frac{1}{P}}\right)}$$

$$d' = M_3 \cdot M_2 \cdot d = \frac{Q}{L \cdot P} \cdot \frac{1}{\frac{1}{f_2} - \frac{1}{L} - \frac{1}{P}} \cdot d$$
$$\Rightarrow M_{C2 \text{ on}} = \frac{Q}{L \cdot P} \cdot \frac{1}{\frac{1}{f_2} - \frac{1}{L} - \frac{1}{P}}$$

$$d' = M_3 \cdot d = \frac{q_3}{p_3} \cdot d = \frac{Q}{P+L} \cdot d$$
$$\Rightarrow M_{C2 \text{ off}} = \frac{Q}{P+L}$$

Compare: $M_{C2 \text{ on}} < M_{C2 \text{ off}}$ $\frac{\cancel{p}}{L \cdot P} \cdot \frac{1}{\frac{1}{f_2} - \frac{1}{L} - \frac{1}{P}} < \frac{\cancel{p}}{P + L}$ $\frac{1}{P} + \frac{1}{L} < \frac{1}{f_2} - \frac{1}{L} - \frac{1}{P}$ $f_2 < \frac{1}{2} \cdot \left(\frac{1}{\frac{1}{P} + \frac{1}{L}}\right)$

(best to have C2 on and strongly excited.)

Beam deflection/tilt

Two deflection coils provide deflection/tilt

Bragg's law and lattice vectors

Bragg's Law

 $2d\sin\theta_B = n\lambda$

Reciprocal Lattice Vector

$$\vec{\mathbf{g}} = \left(\frac{1}{d}\right)\hat{\mathbf{n}}$$

Objective aperture placement

Position of objective aperture in back focal plane

Objective aperture strip for Hitachi TEM

TEM Operational Modes

Bright Field (BF): *OA* includes *0* Two-beam condition

Dark Field (DF): *OA* excludes *0* Two-beam condition

High-Resolution Lattice Image (HR):*OA* includes 0Orient on low-index zone axis

Selected-Area Diffraction Pattern (DP): *SA* in image plane

Bright-/dark-field methods

Objective aperture placement in back focal plane

Centered dark-field imaging

Two-beam condition

Tilt the beam to generate dark-field with the scattered beam on-axis Set up diffraction condition for g, then bring -g parallel to the optic axis.

bright-field

off-axis dark field

centered dark field