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Chapter 12-Reciprocal space 

Conical dark-field imaging 
We primarily use DF imaging to control image contrast, though STEM-DF can also give very high 
resolution, in some cases. If we have single crystal, a g-DF image can formed by tilting the beam in one 
particular direction. But for polycrystalline solids, powders, or nanomaterials, there may be many 
crystallographic orientations within the field of view. One trick to highlight a large fraction of these in 
dark-field mode is to rapidly precess the beam around the optic axis, with a small OA in the BFP of the 
OL. Sinusoidal signals can be sent to the CL deflection coils to drive the beam tilt in a circular path. We 
don’t want any shifting of the beam, only tilt, so alignment is important. A particular reflection g, which 
appears as a ring in the diffraction pattern, can be brought onto the optic axis to form the dark-field 
image. We have achieved centered dark-field conditions for an entire diffraction ring, not just a spot. 

 

Conical dark-field imaging of nanoparticles 
If the precession rate is several Hz or higher, the beam motion is not even noticeable. Switching the tilt 
angle to zero restores the BF image. With the beam tilted, stopping the precession gives a static DF image 
that highlights just a subset of the crystallites. 

 

Partially crystallized material 
One nice thing about DF imaging is it can highlight only features of interest, while masking others. 
Conical DF images of partially crystallized, hydrogenated amorphous silicon (a-Si:H) show very clear 
contrast between amorphous and crystallized areas. In the DF image, the crystals generally appear either 
white or black, depending on whether they are at or away from the Bragg condition of the reflection used 
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(111, in this case). The amorphous regions are essentially featureless in the DF image, making them easy 
to distinguish. In the BF image, these can show contamination or topography on the surface. 

 

Direct and reciprocal lattice parameters 
We know how to find the reciprocal-lattice basis vectors, given a particular set of direct-lattice basis 
vectors. We can identify lattice parameters and angles for these reciprocal-space vectors in an analogous 
fashion. 

1 1 2 2 3 3,  ,  b b b  b b b   

and 

2 3 2 3 1cosb b    b b , 3 1 3 1 2cosb b    b b , and 1 2 1 2 3cosb b    b b  

Say we have an orthorhombic crystal.  

1 2 3 1 2 3,  ,  ,  90a a a b a c           

We saw that the reciprocal lattice is also orthorhombic, i.e.,: 

1 2 3 1 2 3
1 1 1

,  ,  ,  90b b b
a b c

           

Determining interplanar spacing 
The interplanar (d) spacing used in Bragg’s law is given by 1hk hkd  g  , where 

 1 2 3hk h k  g b b b  .  

The general method to find the length of a vector is to dot it with itself and take the square root, so: 
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This is fairly complicated for a low-symmetry crystal, but simplifies greatly with higher symmetry. 
Cubic, for example, reduces to: 
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The d-spacing for orthorhombic is not what you might guess off the top of your head: 
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g  

Ewald sphere 
An important concept in diffraction is the Ewald sphere. It is a reciprocal-space construction used to 
examine the diffraction geometry. The Ewald sphere has radius 1  . Its center is called the “excitation 

point”, which we will label M. The reciprocal-space origin 0 is not at the center of the sphere, but rather 
on the surface of the sphere. The incident wave vector k   (which has length 1  ) points from M to 0. 

 

We are mainly interested in elastic scattering for now, so we know any scattered wave vector k  will also 
have length 1  . Thus, k  can also be drawn from M to the surface of the Ewald sphere. So the sphere 

tells us all possible diffracted wave vectors. If we superpose the sphere on a crystal’s reciprocal lattice, 
we see the relationship between k , k , and any RLV g  for this crystal. The Bragg condition requires 

  k k g . So the reciprocal-space distance from the reciprocal-lattice point g to the sphere is a measure 

of how far the corresponding lattice planes are from the Bragg condition. 

Higher-order Laue zones 
A plane of reciprocal lattice points is called a “Laue zone”. When the plane contains 0, and extends nearly 
perpendicular to the beam, it is called the zero-order Laue zone, or ZOLZ. But this is just one in a series 
of parallel planes. Each of the others is called a higher-order Laue zone, or HOLZ. The HOLZs only get 
close to the Ewald sphere at high angles, so we may have to look more carefully to see evidence of them 
in diffraction patterns. As the beam energy gets higher, the Ewald sphere curvature gets smaller, so the 
intersection with each HOLZ moves out to a larger radius in reciprocal space. (Surprisingly, though, the 
scattering angle for a HOLZ ring gets smaller as the beam energy increases.) 



4 
NANO 703-Notes 

 

The HOLZ rings contain useful information. The reflections contributing to the ring arise from reciprocal-
lattice points with RLVs that are not perpendicular to the beam direction. So the HOLZ ring radius can be 
used to determine the lattice parameter along the beam direction. Also, notice that as we tilt away from 
the axis of the Laue zone, even the intersection of the ZOLZ with the Ewald sphere becomes a circle. 

Si <111> 
One of the most interesting examples of a HOLZ diffraction ring arises from the silicon crystals oriented 
in the <111> orientation. This shows up best in convergent-beam diffraction, which we will discuss later.  

 

Excitation error (deviation parameter) 
A measure of how far a particular set of lattice planes is from the Bragg condition is the distance of the 
corresponding reciprocal-lattice point from the Ewald sphere. The vector, which we call the excitation 
error gs , connecting a point g to the sphere, satisfies 

  gk k + g + s  

But this does not uniquely define. In different contexts, we may choose to measure it either: 1) 
perpendicular to g ; 2) parallel to k ; 3) normal to the surface of the thin TEM foil; or 4) along the 

direction of shortest distance to the sphere. Regardless, when we are at the Bragg condition, its length is 
zero (i.e., 0gs  ). Notice that the length of gs  is unchanged if either the sample or the beam is rotated 

about g. 
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Evaluating excitation error 
We can pick a suitable orientation for sg and find an expression for its length. Say the foil normal is 
vertical ( ˆ ˆ n z  ), The beam is directed downward with a tilt angle  . 

 ˆ ˆsin cosk     k x z  

In TEM, we are almost always interested in reflections arising from RLVs nearly perpendicular to n̂ . 
Let’s assume ˆgg x . For reasons we will explore later, a good assumption is ˆsg gs z . By convention, 

we have assumed 0gs   if g is outside the sphere.  

The lengths of the incident and scattered wave vectors must be equal:  

k   gk k + g + s   

Square the lengths 

2k 2k    22  g gk g + s g + s  

This gives 

2
tan

cos 1 1 2
cos cos

g
g g

s k
k k

                    
 

There are two solutions:    and   . The   solution represents the intersection with the top of the sphere, 
which is not a good indication of the excitation. It is the   solution we need. We are mainly interested in 
high-energy diffraction, with g k . In this case, 
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Sphere volume and ZOLZ intersection 

The Ewald sphere has radius 1  , so its reciprocal-space volume is 34 3k   . We expect the 

intersection with the ZOLZ to be a circle. All points on the circle have 0gs  , so the diameter g  can be 

found by: 

2

0 tan 2 sin
2 cos

g
g g k

k
       


 

If the tilt angle is small, the diameter of the circle becomes 

2
2g k


  


 

 

 


