NANO 703-Notes

Chapter 13-Diffracted beams

Delta function

We need some mathematical tools to develop a physical theory of electron diffraction. Ideal crystals are
infinite things, so there will be some infinities lingering about. Usually, the infinite quantity only exists at
a point in space - either direct or reciprocal - so we get finite numbers for things that we measure. And
when we adjust our theory later for real, imperfect crystals, the infinite things become finite.

A delta function 5(x) (sometimes called a Dirac delta function), is positive infinity at just one place on
the number line, where x =0 . It is zero every where else. But this is a somewhat intractable definition. A
better definition is based on its “sampling property”. That is, whenever another function, such as f (x),

is multiplied by 8(x) and integrated over all , the result is f (0).
f (0)=ji_w f (x)-3(x)-dx

Sosay f(x)=1.We can immediately notice a general property of 5(x):
1=[" 8(x)dx

The integral from —o to +oo can be thought of as a limit:
N

Delta functions are sometimes called “unit impulse functions”.

5(.\'—(;)

Fourier transform
The Fourier transform f (k) of a function f (x) can be thought of as its frequency representation. The

Fourier transform is invertible, s o we can get f (x) back from f (k).

f (k)= J:i_w f (x)e2™dx = 3[ f (x)] //Fourier transform

f(x)= J.kiw f (k)e*™dk = I3[ f (k)] /inverse Fourier transform

We are using the 3 and 3 symbols to represent the Fourier transform and inverse Fourier transform
operations, which are both linear, meaning that 3[a, f, + o, f,]= o, 3[ f,]+ a,3[ f,] for any functions f,
and f, and coefficients o, and o.,.

Here is an example:
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f(x)=0(x—a)=f(k)= g 2rika

Notice that the delta function can be written as:
5(x) =31 ()= e ™dk
Here is another example with two delta functions:
F(%) =%[8(x—a)+6(x+ a)] = f (k)= cos(2nka)

Convolution theorem
Convolutions of two functions show up when every point in one function is modified by another function:

©

BOO* 0= [ OO (x=x)dx

X'=—0

Say we know the Fourier transforms of the two functions
fi(k)=3{f.(x)}, f2(k)=3{f(x)}

The convolution theorem states that the Fourier transform of their convolution equals the product of their
Fourier transforms:

S{H)* (0} = fu(k)- f2(k)

Three-dimensional versions
The Fourier transform of a 3-D function f and the inverse FT are

lim lim

Vv . Q .
f k — f —2mik-r 43 f — f k 2nik-r 3k
()=, ], fes™dr, f(n=_"" [ f()e™d

In 3-D, the delta function can still be written as an integral, and has the sampling property

odim e g o lim ey 3
5(r)_Q%OOj e? ™%k, f(ro)_v_mojr f(r)8(r—ry)dr

k

The convolution of two 3-D functions is
lim %
fu(r)*f(r)= Ifl(r’) fo(r—r)d’r’
V — w0y
The convolution theorem in 3-D becomes

S{f(r)* f2(r)f = fi(k)- f2(k)

Periodic functions
A Fourier series is a the representation of a periodic function by an infinite sum of harmonics:

f(r)= thl fhklezrrighkrr
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The periodicity is guaranteed:

f(r+rw)= thl fhklehigm (F+runw)

— 2mighki T 4 27ighi T
- Z hkd friue € -

- thl fria €™ (1)
f(r+ru)="1(r)

In crystallography, we know will be summing over the RLVs by permuting the indices (hk/) among all
integers, so we can adopt a shorthand notation:

_ 2mighki T _ 27ig-r
f(r)_zhkl ) _Zg f,e
In other words, the sum over the RLVs is an abbreviation for the sum over Miller indices:

thl —>Zg

Another delta function
It makes thinks clearer if we define another delta function to use in reciprocal space

- © , k=0
A(k)= lim J'e—kade _ 0 _
L—>>, 0, otherwise

The 3-D version looks like

(N k=0
A(k) = lim e—ZTuk-rdSr — o0,
() V—>°0(v!‘ ] {0, otherwise

It is often more useful to define a normalized, discrete version

A = lim l\j.eonik‘rd3r 2{1, k=0
Voelvy 0,  otherwise

This form avoids the puzzling infinities.

Proof of convolution theorem
Do you need proof of the convolution theorem? Here it is:
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g(x)= () *h(x) = [dx f (X)h(x=X)
g (k) = S{g(X)} = Idx g(x)e72nikx
= de |:de’ f (X’)h()(_ X'):| e—2nikx
= JdX J.dx' |:_[de f (k/)eZnik’x'jH:J'dk” h(k”)eznik”(xx')} o2k
X X K’ K
- J‘dk'.[dk” f (k’)h(k”)J‘dX' e‘zni(k"‘k')x'jdx g 2mi(kk")x
ook ’ )
= J‘dk"[dk” f (k,)h(k”)A(k”— k,)A(k _ k”)
k' K"
= J.dk" f (k")h(k")A(k _k”)
et

g(k)=f(k)-h(k)

Fourier components
Say we define a normalized Fourier transform using the method for defining A, :

\
_ lim J1 _2niker 43
fi =y _)Oo{ﬂf(r)e d r}
Assume f (r) is periodic. Then
f (r):Zg fgeZT:ig-r

Evaluating the f, gives:
lim |17
_ m 2mig-r \ o-2nik-r 43
fy =y 00{\7-!‘(2 . fie )e d r}

\
_ lim i 2mi(g—K)-r 43
=>.f {V _)oo{v !e d r}}
fk :Zg fg 'Ag—k

In other words, for a periodic function, the Fourier coefficients for the RLVs are the only non-zero
Fourier components.

Fourier components of crystal potential
The main function | have in mind in this discussion is the electrostatic potential, of a crystal, or crystal
potential, for short. The crystal potential can be written as:

(D(r) = qu)gezmg-r

We can make some generalizations about the @, . Let’s look at the complex conjugate of ®(r):
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[@(N)] =3, (@) e
It is usually a good starting point to assume @®(r) is real. So

o(r)=[®(n]
Z q) eng or z (CI) )* 27i(-g)-r
Zg (DgeZTug-r — zg (q)—g ) e2nig»r
So if the crystal potential is real, we can always say:
(q)g )* =d_
Now let’s look at the what happens if we invert the crystal about the origin
CD(—r) = qu)ge—znig»r
If the origin is a center of inversion symmetry, then
O(r)=(-r)
Zg q)geZnigvr — Zg q)ge—Znig-r
Zg q)gezmg-r - Zg (D7g62nig-r
So, if the crystal potential is “centrosymmetric”, we can say:
D, =D_,
If the crystal potential is both real and centrosymmetric, then all of its Fourier coefficients are real:
Dy =D, =(D,) =real

Evaluating the crystal potential by convolution
The tools introduced here so far are intended to make life easier. For example consider a periodic array of
delta functions, located at the lattice points of a crystal:

X(r)=> 8(r-r,)

Now take the electrostatic potential ¢(r) of just one unit cell. The convolution of these gives the crystal
potential:

D(r)=¢(r)*X(r)

In direct space, we get back the expected sum of potentials for all unit cells
o(r)=2 o(r-r)

The advantage comes in reciprocal space, where we can use the convolution theorem

S[@(n)]=3[¢(r)]-I[X ()]



NANO 703-Notes

array of delta functions atomic potential(s) crystal potential
¥ ¥ vy

e o e o T
|

e o e o 5 5 5 » »
I

3 . x = — - -0-0-9 -

|

e o e o R 2 =
|

e o e o 5 5 » & »
|

Crystal function (lattice sum)
Can we say anything else about J[ X (r)]? For an infinite crystal

X(r)=\ M S 5(r-n)]

Its Fourier components are:
\Y N
lim J1¢ lim ) ez lim J1 lim 2k,
V—>oo{_rN—>oo[26(r Fn )} d r} V—>oo{v N—>ooLZ_;e }}

We can just divide up space into unit-cell-sized regions, with one lattice point per region. If the unit cell
volume is v, then V = Nv

1

X, = lim LZN e.znikArn _ V, k =an RLV
K N —> 0 NV n=1 )

0 k = otherwise

So the Fourier series representation of the crystal function is very simple:
2mig-r 1 2mig-r
X(r)=Y XM ={=|>e
g v g

Unit-cell potentials
The total crystal potential is a sum over unit-cell potentials:

o(r)= "M [ o(r-r)]

We can usually assume that the unit-cell potential is a sum over atomic potentials, with atoms located at
their appropriate positions in the unit cell:

o(r)= > o™ (r-dm)

m atoms

We argued that the individual potentials for isolated atoms had spherical symmetry. So

sm(2ngr)d

(m) (m)
o™ (9)= 4njr¢ () rar

r=
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Thus, the Fourier transform of the unit-cell potential is:
= Y o™ (g)e ™

_lim (M (¢ AMY |a-2rigr 43
q;(g)_v_)OO J:L%:m(b (r-d™)|e?™erd’r
The sign on the exponent of the phase factor is sometimes opposite by convention. Please bear with me.

\
m atoms

|

Evaluating the Fourier components of the crystal potential
We saw that @ (r) is the convolution
D(r)=¢(r)*X(r)
So @, is the product:

Dy =0(9)- X,
We often assume the wave function above the sample is described by a plane wave that represents the

Total wave function

incident beam:

\U(r) — e27:ik<r
Below the sample, the total, transmitted wave function is a collection of diffracted beams, including 0,
which are each plane waves with different amplitudes and traveling in different directions:

w(r)=) P

using the abbreviation

ke =k+g+s,

If we know the crystal structure and orientation, we also know the k. But we need a procedure to find

the beam amplitudes ‘¥, . Once we know those, the intensities of the diffraction spots will be

Ig:lnglz



