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Chapter 13-Diffracted beams 

Delta function 
We need some mathematical tools to develop a physical theory of electron diffraction. Ideal crystals are 
infinite things, so there will be some infinities lingering about. Usually, the infinite quantity only exists at 
a point in space - either direct or reciprocal - so we get finite numbers for things that we measure. And 
when we adjust our theory later for real, imperfect crystals, the infinite things become finite. 

A delta function ( )xδ  (sometimes called a Dirac delta function), is positive infinity at just one place on 
the number line, where 0x =  . It is zero every where else. But this is a somewhat intractable definition. A 
better definition is based on its “sampling property”. That is, whenever another function, such as ( )f x ,  
is multiplied by ( )xδ  and integrated over all , the result is ( )0f . 

( ) ( ) ( )0
x

f f x x dx
∞

=−∞
= ⋅ δ ⋅∫  

So say ( ) 1f x = . We can immediately notice a general property of ( )xδ : 

( )1
x

x dx
∞

=−∞
= δ∫   

The integral from −∞  to +∞  can be thought of as a limit: 

lim L

x x LL
∞

=−∞ =−
→

→ ∞∫ ∫  

Delta functions are sometimes called “unit impulse functions”. 

 

Fourier transform 
The Fourier transform ( )f k  of a function ( )f x  can be thought of as its frequency representation. The 
Fourier transform is invertible, s o we can get ( )f x  back from ( )f k . 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]

2

2 1

e  //Fourier transform

e  //inverse Fourier transform

ikx

x

ikx

k

f k f x dx f x

f x f k dk f k

∞ − π

=−∞

∞ π −

=−∞

= = ℑ

= = ℑ

∫
∫

 

We are using the ℑ  and 1−ℑ  symbols to represent the Fourier transform and inverse Fourier transform 
operations, which are both linear, meaning that [ ] [ ] [ ]1 1 2 2 1 1 2 2f f f fℑ α + α = α ℑ + α ℑ   for any functions 1f  
and 2f  and coefficients 1α  and 2α . 

Here is an example: 
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( ) ( ) ( ) 2e ikaf x x a f k − π= δ − ⇒ =  

Notice that the delta function can be written as: 

( ) ( )1 21 e ikx

k
x dk

∞− π

=−∞
δ = ℑ = ∫  

Here is another example with two delta functions: 

( ) ( ) ( )[ ] ( ) ( )1 cos 2
2

f x x a x a f k ka= δ − + δ + ⇒ = π  

Convolution theorem 
Convolutions of two functions show up when every point in one function is modified by another function: 

( ) ( ) ( ) ( )1 2 1 2*
x

f x f x f x f x x dx
∞

′=−∞

′ ′ ′= −∫  

Say we know the Fourier transforms of the two functions 

( ) ( ){ }1 1f k f x= ℑ , ( ) ( ){ }2 2f k f x= ℑ  

The convolution theorem states that the Fourier transform of their convolution equals the product of their 
Fourier transforms: 

( ) ( ){ } ( ) ( )1 2 1 2*f x f x f k f kℑ = ⋅  

Three-dimensional versions 
The Fourier transform of a 3-D function f and the inverse FT are 

( ) ( ) 2 3lim
e

V if f d r
V

− π ⋅=
→ ∞∫ k r

r
k r , ( ) ( ) 2 3lim

e if f d k
Ω π ⋅=

Ω → ∞∫ k r

k
r k  

In 3-D, the delta function can still be written as an integral, and has the sampling property 

( ) 2 3lim
e i d k

Ω π ⋅δ =
Ω → ∞∫ k r

k
r , ( ) ( ) ( ) 3

0 0
lim V

f f d r
V

= δ −
→ ∞∫r

r r r r  

The convolution of two 3-D functions is 

( ) ( ) ( ) ( ) 3
1 2 1 2

lim
*

V

f f f f d r
V ′

′ ′ ′= −
→ ∞∫

r

r r r r r  

The convolution theorem in 3-D becomes 

( ) ( ){ } ( ) ( )1 2 1 2*f f f fℑ = ⋅r r k k  

Periodic functions 
A Fourier series is a the representation of a periodic function by an infinite sum of harmonics: 

( ) 2e hkli
hklhkl

f f π ⋅= ∑ g rr  
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The periodicity is guaranteed: 

( ) ( )

( )

( ) ( )

2

2 2

2

e

e e

e 1

hkl uvw

hkl hkl uvw

hkl

i
uvw hklhkl

i i
hklhkl

i
hklhkl

uvw

f f

f

f

f f

π ⋅ +

π ⋅ π ⋅

π ⋅

+ =

= ⋅

= ⋅

+ =

∑
∑
∑

g r r

g r g r

g r

r r

r r r

 

In crystallography, we know will be summing over the RLVs by permuting the indices ( )hk  among all 
integers, so we can adopt a shorthand notation: 

( ) 2 2e ehkli i
hklhkl

f f fπ ⋅ π ⋅= =∑ ∑g r g r
gg

r  

In other words, the sum over the RLVs is an abbreviation for the sum over Miller indices: 

hkl
→∑ ∑g

 

Another delta function 
It makes thinks clearer if we define another delta function to use in reciprocal space 

( ) 2 ,          0lim e
0,          otherwise

L
ikx

x

k
k dx

L
− π ∞ =  ∆ ≡ =  → ∞  

∫  

The 3-D version looks like 

( ) 2 3 ,          lim e
0,          otherwise

V
i d rV

− π ⋅ ∞ =  ∆ ≡ =  → ∞  
∫ k r

r

k 0
k  

It is often more useful to define a normalized, discrete version 

2 3 1,          1lim e
0,          otherwise

V
i d rV V

− π ⋅ =  ∆ ≡ =  → ∞  
∫ k r

k
r

k 0
 

This form avoids the puzzling infinities. 

Proof of convolution theorem 
Do you need proof of the convolution theorem? Here it is: 
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( ) ( ) ( ) ( ) ( )

( ) ( ){ } ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

2

2 2 2

2 2

 

 e

   e

   e  e  e

  e e

x

ikx

x

ikx

x x

ik x ik x x ikx

x x k k

i k k x i k

x

g x f x h x dx f x h x x

g k g x dx g x

dx dx f x h x x

dx dx dk f k dk h k

dk dk f k h k dx dx

′

− π

− π

′

′ ′ ′′ ′π π − − π

′ ′ ′′

′′ ′ ′− π − − π

′

′ ′ ′= ∗ = −

= ℑ =

 ′ ′ ′= − 
 

   ′ ′ ′ ′′ ′′=    
   

′ ′′ ′ ′′ ′=

∫

∫

∫ ∫

∫ ∫ ∫ ∫

∫  ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

 

 

k x

k k x

k k

k

dk dk f k h k k k k k

dk f k h k k k

g k f k h k

′′−

′ ′′

′ ′′

′′

′ ′′ ′ ′′ ′′ ′ ′′= ∆ − ∆ −

′′ ′′ ′′ ′′= ∆ −

= ⋅

∫ ∫ ∫

∫ ∫

∫

 

Fourier components 
Say we define a normalized Fourier transform using the method for defining ∆k : 

( ) 2 31lim e
V

if f d rV V
− π ⋅ 

=  → ∞  
∫ k r

k
r

r  

Assume ( )f r  is periodic. Then 

( ) 2e if f π ⋅= ∑ g r
gg

r  

Evaluating the fk  gives: 

( )
( )

2 2 3

2 3

1lim e e

1lim e

V
i i

V
i

f f d rV V

f d rV V

f f

π ⋅ − π ⋅

π − ⋅

−

 
=  → ∞  

  
=   → ∞  
= ⋅ ∆

∑∫

∑ ∫

∑

g r k r
k gg

r

g k r
gg

r

k g g kg

 

In other words, for a periodic function, the Fourier coefficients for the RLVs are the only non-zero 
Fourier components. 

Fourier components of crystal potential 
The main function I have in mind in this discussion is the electrostatic potential, of a crystal, or crystal 
potential, for short. The crystal potential can be written as: 

( ) 2e iπ ⋅Φ = Φ∑ g r
gg

r   

We can make some generalizations about the Φg .  Let’s look at the complex conjugate of ( )Φ r : 
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( )[ ] ( )* * 2e i− π ⋅Φ = Φ∑ g r
gg

r  

It is usually a good starting point to assume ( )Φ r  is real. So 

( ) ( )[ ]
( ) ( )

( )

*

*2 2

*2 2

e e

e e

i i

i i

π ⋅ π − ⋅

π ⋅ π ⋅
−

Φ = Φ

Φ = Φ

Φ = Φ

∑ ∑
∑ ∑

g r g r
g gg g

g r g r
g gg g

r r

 

So if the crystal potential is real, we can always say: 

( )*
−Φ = Φg g  

Now let’s look at the what happens if we invert the crystal about the origin 

( ) 2e i− π ⋅Φ − = Φ∑ g r
gg

r  

If the origin is a center of inversion symmetry, then 

( ) ( )
2 2

2 2

e e

e e

i i

i i

π ⋅ − π ⋅

π ⋅ π ⋅
−

Φ = Φ −

Φ = Φ

Φ = Φ

∑ ∑
∑ ∑

g r g r
g gg g

g r g r
g gg g

r r
 

So, if the crystal potential is “centrosymmetric”, we can say: 

−Φ = Φg g  

If the crystal potential is both real and centrosymmetric, then all of its Fourier coefficients are real: 

( )* real−Φ = Φ = Φ =g g g  

Evaluating the crystal potential by convolution 
The tools introduced here so far are intended to make life easier. For example consider a periodic array of 
delta functions, located at the lattice points of a crystal: 

( ) ( )nn
X = δ∑r r - r  

Now take the electrostatic potential ( )φ r of just one unit cell. The convolution of these gives the crystal 
potential: 

( ) ( ) ( )* XΦ = φr r r  

In direct space, we get back the expected sum of potentials for all unit cells 

( ) ( )nn
Φ = φ∑r r - r  

The advantage comes in reciprocal space, where we can use the convolution theorem 

 ( )[ ] ( )[ ] ( )[ ]Xℑ Φ = ℑ φ ⋅ ℑr r r  
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Crystal function (lattice sum) 
Can we say anything else about ( )[ ]Xℑ r ? For an infinite crystal 

( ) ( )
1

lim N
nn

X N =
 = δ → ∞ ∑r r - r  

Its Fourier components are: 

( ) 2 3 2

1 1

1 1lim lim lim lime e n

V N N
i i

n
n n

X d rN NV VV V
− π ⋅ − π ⋅

= =

      = δ − =      → ∞ → ∞ → ∞ → ∞     
∑ ∑∫ k r k r

k
r

r r  

We can just divide up space into unit-cell-sized regions, with one lattice point per region. If the unit cell 
volume is v, then V Nv=  

-2
1

1 , an RLV1lim e
0, otherwise

nN i
n

X vN Nv
π ⋅

=

 = = =  → ∞   =
∑ k r

k
k

k
 

So the Fourier series representation of the crystal function is very simple: 

( ) 2 21e ei iX X
v

π ⋅ π ⋅ = =  
 ∑ ∑g r g r

g
g g

r  

Unit-cell potentials 
The total crystal potential is a sum over unit-cell potentials: 

( ) ( )
1

lim N
nnN =

 Φ = φ → ∞ ∑r r - r  

We can usually assume that the unit-cell potential is a sum over atomic potentials, with atoms located at 
their appropriate positions in the unit cell: 

( ) ( ) ( )( )
 atoms

m m

m
φ = φ∑r r - d  

We argued that the individual potentials for isolated atoms had spherical symmetry. So 

( ) ( ) ( ) ( ) ( )2

0

sin 24
2

m m

r

grg r r dr
gr

∞

=

π
φ = π φ

π∫  
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Thus, the Fourier transform of the unit-cell potential is: 

( ) ( ) ( )( ) ( ) ( )
( )2 3 2

 atoms  atoms

lim e e
m

V
m m i m i

m m
d r gV

− π ⋅ − π ⋅  φ = φ = φ  → ∞   
∑ ∑∫ g r g d

r

g r - d  

The sign on the exponent of the phase factor is sometimes opposite by convention. Please bear with me. 

Evaluating the Fourier components of the crystal potential 
We saw that ( )Φ r  is the convolution 

( ) ( ) ( )* XΦ = φr r r  

So Φg  is the product: 

( ) XΦ = φ ⋅g gg  

Total wave function 
We often assume the wave function above the sample is described by a plane wave that represents the 
incident beam: 

( ) 2e iπ ⋅ψ = k rr  

Below the sample, the total, transmitted wave function is a collection of diffracted beams, including 0, 
which are each plane waves with different amplitudes and traveling in different directions: 

( ) 2e iπ ⋅ψ = Ψ∑ gk r
gg

r  

using the abbreviation 

= + +g gk k g s  

 

If we know the crystal structure and orientation, we also know the gk . But we need a procedure to find 

the beam amplitudes Ψg . Once we know those, the intensities of the diffraction spots will be 

2I = Ψg g  

 

 


