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Chapter 16-Diffraction from crystals 

Structure factor 
The structure factors are proportional to the Fourier coefficients of the crystal potential. We assumed 
discrete, spherically symmetric atoms. The position of atom m  can be specified by a short vector md  that 

points to a location in the unit cell: 
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 atoms

e mi
m

m

F f    g d
g  

The factor mf  is an abbreviation for the function that we previously called
   mf s , where 2s g  

(which is how the form factors are usually tabulated). The simplest way to specify the vectors md  is in 

terms of the direct-lattice basis vectors 

 1 2 3 , ,m m m m m m mx y z x y z   d a a a   

in which case we just need the atomic coordinates  , ,m m mx y z . These are typically dimensionless 

fractions in the range 0 to 1, indicating any position in the unit cell. 

We know that any RLV is just 1 2 3h k  g b b b , so the dot product in the exponent has a simple form. 

m m m mhx ky z   g d    

Fortunately, all of the cross terms vanish. Now we can write the structure factors in a form that is still 
very general using Miller indices, instead of vectors: 
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If you have been tracking signs carefully up this point, you may notice that the exponents used in the 
structure factor should actually have the opposite sign to that shown above. In other words, our hkF   is 

really  *hkF  , depending on who you ask, but it looks a little simpler this way. 

Example: Simple cubic lattice with two-atom basis 
Here is an example that is somewhat general, but also easy. For a simple cubic (sc) crystal (simple 
implying there are lattice points only at the cube corners), we might as well align the direct lattice along 
the Cartesian coordinates: 

1 2 3ˆ ˆ ˆ,  ,  a a a  a x a y a z  

where a  is the cubic lattice parameter. A word we used before has another meaning here: The "basis" of 
the crystal sometimes refers to all of the atoms in the unit cell and their arrangement. Let's say atom 1 is 
particularly heavy (large Z ), so we put it at the corner site:  1 0,0,0d . A second atom may be at some 

arbitrary location  2 , ,x y zd . If atom 1 is of type "A" and atom 2 is of type "B", the structure factor in 

this example is then 

   0 2 2e e ei i hx ky lz i hx ky lz
hkl A B A BF f f f f          
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Example: Body-centered cubic lattice 
The sc lattice is not the only one with cubic symmetry. Sometimes extra lattice points can be identified 
within the unit cell that have the same symmetry as those at the corners. These lattices are called 
“centered”. The body-centered cubic (bcc) lattice occurs when there is an extra lattice point at the cube 
center. This often occurs when there is just one type of atom that prefers to have eight nearest neighbors 
of its one kind.  

 

To describe the crystal, we just need a cubic unit cell with atom 1 at the corner position and atom 2 at the 
body center. 

atom form factor site 
1 f   0,0,0   
2 f    1 2,1 2,1 2   

 

The structure factor is: 

  1 e i h k l
hklF f       

Interesting things happen in the sum of phase factors. Notice that  

  1,         even
e

1,       odd
i h k l h k

h k
         




  

Because of the centering, there is constructive interference between the corner and centered atom when 
evenh k    and destructive interference when oddh k   . So 

2 ,         even

0,           odd
hk

f h k
F

h k

      





  

The Miller indices with non-zero structure factor correspond to “allowed reflections”. The rest are called 
"systematic absences". A list of these by Miller indices would be infinitely long, but we can write out a 
partial list of the first few: 

{110} 
{200} 
{202} 
{222} 
{400} 

. 

. 

. 
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Example: Face-centered-cubic lattice 
The face-centered-cubic (fcc) lattice is very common in metals, for reasons we will examine later. An fcc 
crystal with only one atom per lattice site has four atoms in the cubic unit cell, with one on the corner and 
one on each face:  

 

atom form factor site 
1 f   0,0,0   
2 f    0,1 2,1 2   

3 f    1 2,0,1 2   

4 f    1 2,1 2,0   

 

The structure factors for fcc are: 

      1 e e ei k i h i h k
hkF f           
   

We can again divide this into allowed reflections and systematic absences. 

4 ,         , ,  all even or all odd

0,           , ,  mixed even/odd
hk

f h k
F

h k
 






  

A partial list of allowed indices begins as follows: 

{200} 
{111} 
{220} 
{311} 
{400} 

. 

. 

. 
Crystal potential and structure factors 
The choice of unit cell is not unique, so that means we may get different value for Fg  if we pick a 

different unit cell. Say we picked a unit cell that was twice as big, with twice as many atoms. I'm claiming 
that, when you calculate the diffracted amplitude (and intensity), you will get the same number. Let's see 
how that works. 

The crystal potential is the Fourier series: 

  2e i     g r
gg

r   
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The Fourier components are   X   g gg . We saw that 1X vg  whenever g  is an RLV. The unit-cell 

potential is 

  2

 atoms

e mi
m

m

    g dg  

which is linked to the atomic form factors by 

2

2
m m

me
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We were just looking at the structure factors: 

2
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m

F f e    g d
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But what really showed up in dynamical-diffraction theory are the extinction distances, which involve the 
Fourier components of the structure function: 

2

2 Fme
U

h v
  


g

g g  

The whole point of this discussion was to show that if we change the unit-cell volume, we will be 
summing over more atoms, but then we will need to divide by a bigger volume, so the Ug  stay the same, 

and all is well. 

Diamond structure 
We are systematically going through some common, simple crystal structures. The next one up is 
diamond, which is built on the fcc structure, but instead of just one fcc lattice, we have two identical fcc 
lattices, with one offset from the other by ¼[111].  

 

The structure factor can be found by summing the two. Say the first lattice is just the fcc lattice we 
discussed before, with a lattice point at the cube corner. 

        1 1 e e ei k i h i h k
hkF f           
  

The second is offset by  

     1 2 3ˆ ˆ ˆ 4 4 1 4,1 4,1 4a      d x y z a a a  

This amounts to just multiplying by an extra phase factor: 

          2 21 e e e ei k i h i h k i h k
hkF f                
  

We have to add them together: 
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             1 2 21 e e e 1 ei k l i h l i h k i h k l
hkl hkl hklF F F f                   

As before, the first factor in square brackets is either 4 or 0. The second factor can be 2, 1 i , or 0. From 
the first factor, we again know that hk  for allowed reflections must be all even or all odd. (The rest are 
systematically absent.) Among that subset of allowed reflections, we have: 

 
8 ,                   4

4 1 ,         2 1

0,                     4 2
hk

f h k N

F i f h k N

h k N

  
     
    







  

Reflections in the last category, with zero structure factor, are called "kinematically forbidden". It is not 
that we never see them, just that they only appear when dynamical effects are strong.  

Zincblende structure 
Zincblende is a variation on the diamond structure. Instead of two identical fcc sublattices, one contains a 
different element than the other (ZnS, for example.)  

 

We still know that allowed reflections have hk  all even or all odd. But within that set, we now get 

   

 
 
 

1 2

4 ,                 4

4 ,                2 1

4 ,                4 2

A B

hk hk hk A B

A B

f f h k N

F F F f if h k N

f f h k N

   
       
     

  





  

We no longer have kinematically forbidden reflections, but there may be very weak reflections if 
dynamical effects are not present and 4 2h k N     , such, as for example {200} and {420}. 

Superlattices 
One way we can start with simple crystals and build up more complex, periodic (or quasi-periodic) 
crystals is by forming superlattices. Sometimes these occur spontaneously; other times they are 
synthesized by nanofabrication techniques in the lab. A common type of synthetic superlattice consists of 
alternating layers of two compatible materials, such as GaAs and InAs semiconductors. TEM is a great 
tool to characterize these, because the length scale is easily accessible at typical TEM resolutions. To be a 
superlattice, there must be some quantity that is being alternated periodically; in this case it is a periodic 
substitution of In for Ga. 
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The volume for this extra periodicity is called the "supercell". Ideally, it matches with an integer number 
of the basis, or "matrix", unit cell from which it was built (i.e., it is commensurate), but that is not always 
true. We still expect to see diffraction from the matrix crystal structure, and the conventional Miller 
indices can be assigned to those reflections. But the superlattice also generates reflections, and these can 
be associated with either fractional Miller indices or, sometimes, systematically absent or kinematically 
forbidden reflections. For a long-period superlattice, these so-called "superlattice reflections" may appear 
very close to the matrix reflections. Often, there is a close correspondence between the reflections 
observed in an actual selected-area pattern and the Fourier components that appear in an FFT of an image 
taken in the same orientation. This is not a coincidence, but the FFT should not be mistaken for a 
diffraction pattern, nor vice versa. 

In short, we can say that a superlattice is a large unit cell built by ordering a smaller unit cell. 

Atomic ordering in metal alloys 
Alloys can be thought of as crystals with random substitutions of the different alloy components on the 
lattice sites. Atomic ordering usually refers to very short-period superlattice formation in these alloys, and 
it usually implies that the superlattice formed spontaneously. For the common crystal structures, there are 
a few types of ordered arrangements that show up often. Most of these were observed in metallurgical 
work of the early 20th century, so we just refer to the ordered structures by the names of the metal alloys 
they are known to occur in. Here are some examples: 

Near 1:1 atomic ratio of Cu/Au, the CuAu alloy orders with Cu and Au occupying alternating (002) 
planes of its fcc lattice. This generates a (001) periodicity that would otherwise be absent. (Normally, the 
structure factors for an fcc lattice require hk  all even/all odd.) The corresponding superlattice spots 
appear in the diffraction pattern. 

Under some conditions, the CuPt alloy orders with Cu and Pt occupying alternating {111} planes of its 
fcc lattice. When the lattice spacing is doubled in direct space, diffraction spots appear at ½ positions in 
the diffraction pattern. 
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Atomic ordering in semiconductors 
Ordering can show up in either sublattice of zincblende crystals. There are four possible {111} directions 
w.r.t. the surface. Ordering along two of these are called the CuPt-A “variants”; the other two are CuPt-B 
variants. 

 

Under some conditions, CuAu-I ordering shows up on the Cu-In sublattice of CuInSe2. Chalcopyrite is 
another type of ordering observed in CuInSe2. The name comes from the CuFeSe2 mineral the structure is 
associated with. 

CuPt-ordered GaInP2 
The extra periodicity associated with ordering leads to many possibilities. For one thing, ordering can 
occur along different symmetry-equivalent directions. The CuPt-B ordered phase occurs in two possible 
subvariants (sometimes just called variants). Slight differences in surface orientation will allow one 
variant to dominate over the other. A single-variant film can show large domains, usually separated by 
antiphase boundaries (discussed later). Double-variant films show tiny lamellar domains that also form a 
quasi-periodic superlattice. The 1/2(111) planes are easily resolved in TEM lattice images, if we know 
where to look. The best place is along the [110]A zone axis, which is perpendicular to both {111}B 
directions. In this orientation, we see not only the ordered periodicity, but the underlying zincblende 
structure, as well. The type of ordering present is clearly evident from the superstructure intensity in 
selected-area diffraction patterns. These tiny domains in double-variant samples cause broadening of the 
ordered diffraction patterns. 
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Ordering in CuInSe2 
CuInSe2 is considered a  useful material for photovoltaics. Unlike Ga and In in GaInP2, Cu and In are not 
not from the same columns on the periodic table, so the substitution of one for another is more unusual. 
But at the 1:1:2 composition ratio, they can assume various structural arrangements, depending on the 
synthesis method. The CuAu-I and chalcopyrite structures are two possible outcomes. 

 

It is usually more convenient to index the patterns based on the “sphalerite” structure, in which Cu and In 
are randomly distributed. The is equivalent to a disordered zincblende structure. By picking this reference 
structure, it makes it easier to convey alterations, such as ordering, and the orientations of domains of 
these ordered phases with respect to one another. 

Example: Hexagonal close-packed structure 
Another important crystal structure is hexagonal close packed (hcp). Hexagonal refers to the type of 
lattice, with lattice points arranged in 2-D sheets of regular hexagons (or triangles, if you prefer), which 
are stacked in a layered structure. We need two lattice parameters, a  and c , to specify the unit cell. a  is 

the nearest neighbor distance; 2c  is the interlayer spacing. The unit-cell volume is 23 2v a c . We can 

define a unit cell as: 

1 ˆaa x , 2
3

ˆ ˆ
2 2

a
a  a x y , and ˆcc z  
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The hcp structure usually refers to a compound containing only one element. We need two atoms of this 
element to generate the unit cell.  

atom form factor site 
1 f   0,0,0   
2 f    1 3,2 3,1 2   

The structure factors turn out to be 

2
2

3 3 21 e
h k

i

hkF f
    
     



  

Notice that the extra layer of atoms at 2c  causes 00 0F   for   odd. 

Indexing hexagonal crystals (I) 
We made a choice when defining the hexagonal unit cell that 2a  would be oriented 120° clockwise about 

3a  from 1a . A direct-lattice vector could be written: 

1 2 3 UVW U V W     r a a a  

There is a symmetry-equivalent direction at 120° counter-clockwise about 3a  from 1a : 

 12 1 2  a a a  

 

Indexing hexagonal crystals (I) 
Let’s rewrite the direct-lattice vector as 
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1 2 12 3

1 2 1 2 3

1 2 3

 uvtw

uvtw UVW

u v t w

u v t w

u t v t w

       
        
        

r a a a a

a a a a a

r a a a r

 

We can relate the indices by: 

U u t

V v t

W w

 
 


 

There is an extra degree of freedom here. Let’s pick  t u v   . Now we can specify: 

 

 

 

2 3

2 3

3

u U V

v V U

t U V

w W

 
 
  


 

The four indices  uvtw  highlight the hexagonal symmetry of the crystal. For example, with three indices, 

it is obvious that [100] and [010] are symmetry equivalent: these are 1a  and 2a . But  1 10 , 

corresponding to 12a , is symmetry equivalent to both of these. In our new basis, the equivalence is 

obvious: 

   1
100 2110

3
 ,    1

010 1210
3

 ,    1
110 1120

3
  

Comparing close-packed structures: fcc and hcp 
There is a reason we call hcp “hcp”. First, we can think of atoms as hard spheres in this context. The 
closest they can be packed together in a 2-D layer is like the hexagonal sheets (called the basal planes) in 
the hcp structure. Another sheet can be stacked on the first in one of two equivalent positions, with each 
atom of the top layer touching three atoms in the layer below.  

So what about the next (third) sheet? It could either be aligned with the first sheet, or placed in alignment 
with the position we didn’t use for the second sheet. Say the first sheet is in position A and the second is 
in position B. If we put the third sheet in position A, and keep repeating this sequence, we get an hcp 
structure, following the sequence AB/AB/AB... If we put the third sheet in the unused position - position 
C - we get an fcc structure, also called a “cubic close-packed” structure, following the sequence 
ABC/ABC/ABC… 

We can make the connection even more precise by relating the interlayer spacing to the nearest-neighbor 
distance n-nd . Consider hcp, with  

n-n
hcpd a . In general, for an hcp structure, the interlayer spacing is 

0002 2d c . 

Now consider fcc, with  
n-n 2fccd a . The layers here extend along [111], and have spacing  

 
111 n-n

2
3

3
fccd a d   
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In the “ideal” hcp structure, the interlayer spacing is also related to the nearest-neighbor spacing. We 
would have  

 
n-n

2
2

3
idealc d  

So the ideal hcp structure has a c lattice parameter of 

   
n-n

2 8
2

3 3
ideal hcpc d a   

To summarize, the hcp and fcc structures are both close-packed structures. They differ only the sequence 
by which we stack the hexagonal 2-D close-packed sheets. This is at least one reason the fcc is such a 
common crystal structure among single element materials. 

 

Example: CdSe on (111) GaAs 
There is often only a small energy difference between fcc and hcp structures in materials with a particular 
composition. For example, CdSe can form either the fcc, zincblende phase, or the hcp, wurtzite phase, 
depending on slight differences in synthesis procedure. If we start with a cubic GaAs substrate in an (001) 
orientation, epitaxial CdSe crystal likely to maintain the zincblende structure, because the planes have an 
oblique orientation with respect to the surface. But when grown on a (111) GaAs substrate, the difference 
is practically negligible, because each 2-D sheet can pick one of the two available close-packed 
alignments freely. So we may get patches of hcp in one area, and patches of fcc in another. these look 
different in TEM lattice images, and we can confirm the structures with FFTs of the images. (Double 
diffraction in hcp CdSe gives rise to 0001 spots, but no equivalent spot is observed for fcc.) 
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