
1 
NANO 703-Notes 

Chapter 17-Diffraction from small volumes 

Two-beam intensity 
Remember the effective excitation error for beam g? 
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The general two-beam result for g was: 
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Next we find the intensity for the g beam: 
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where w s= ξ . 

Alternative form 
Been there, done that, you say. Well, an alternative form is 
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Now the two-beam intensity is 
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Variation with thickness/excitation error 
We should expect to see oscillations in intensity with both thickness and excitation error. We could plot 
Ig  vs. T ξ  at carefully selected values of w . Or, we could plot Ig  vs. w  for nice values of T ξ : 

 

In the first case, the oscillation is sinusoidal, but the amplitude and period decrease as we move away 
from the Bragg condition. In the second case, we see the sinc-squared function, with the period of 
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oscillation in w  getting shorter as the sample gets thicker. These intensity variations are called 
“pendellosung” oscillations. The show up in X-ray diffraction, too, from very thin films. 

Kinematical approximation 
A simpler picture starts to emerge if we are away from the Bragg condition, in which case 2 1w  . Let’s 
assume the diffraction is so weak that the direct-beam intensity is undiminished from its incident value, so 

1Ψ =0 . This is called the “kinematical” approximation. Starting with the good old Howie-Whelan 
equations, we can say: 
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To find Ψg , we can integrate over the foil thickness T:  
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Basically, we have assumed 1w  , meaning that effs s≈  and 1s ξ .  

Interpretation 
Let’s take another look at the integral we just did. Forgetting the factor in front, we can say: 
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The integral is a Fourier transform over the square envelope, or “shape” function 
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This function basically tells us where to evaluate the crystal potential. It describes the shape of a thin foil. 
Its Fourier transform (in terms of s ) is: 
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So here is another way to write the diffracted amplitude: 
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The diffracted amplitude is distributed in reciprocal space as a function of s  about the reciprocal-lattice 
point g. The distribution is just the Fourier transform of the envelope function describing the shape of our 
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specimen. This is a general result for small crystals (i.e., nanomaterials), not just thin foils. The diffracted 
intensity is proportional the FT of the shape function of the specimen. 
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Dynamical vs. kinematical 
Let’s see how far we are off using this approximation. Near the Bragg condition, kinematical theory only 
works for very thin (small samples), but as we move farther from 0s = , the approximation gets better. 

 

Limitations of kinematic theory 
Kinematic theory breaks down when we are near the Bragg condition and the sample is thicker. Say we 
are at 0s = . Kinematic theory says, in this case: 
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But the intensity has an upper limit of 1I =g  (the same as our incident beam). So we definitely don’t 

want to use kinematic theory ifT > ξ π . It works best to describe the intensity when: 1) the sample is 
thin and 2) we are far from the Bragg condition. 
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Relrods 
There is a geometric interpretation of this. Imagine that, for a small crystal, each reciprocal-lattice point is 
now distributed into a halo around the point we would associate with an infinite crystal. For a think foil, 
this is a rod extending normal to the foil direction, called a “relrod”. Actually, the rod oscillates in 
strength around the point where 0s = . But the rod moves with the crystal; it doesn’t really matter what 
direction the beam comes from. So kinematical theory lets us think of diffraction geometrically. 

 

Diffraction from thin crystals 
It doesn’t matter which reciprocal lattice point we were talking about before. The intensity scales overall 

as 
2Fg , but the geometric factor ( ) 2

L s  is the same for all reciprocal lattice points. Thus, we can 

imagine a relrod attached to every reciprocal lattice point in our thin crystal. The intensity of each 
diffraction spot depends on where its relrod intersects the Ewald sphere. Now we know why so many 
spots appear in a selected-area diffraction pattern from a thin foil. We don’t have to be right at the Bragg 
condition for any particular reflection to show up, because the reciprocal-lattice points are all stretched 
out in the thin direction. 

 

Shape function: circle 
Since we think the FT of the shape function determines the distribution of intensity in reciprocal space, 
we can calculate a few 2-D examples. Say we have a circle that is uniformly filled. Let’s find its FFT: 
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Now within the image the circle is the shape function for a square lattice of points. 

 

The lattice gives rise to an array of reciprocal-lattice spots. The intensity around each spot is spread out 
by the shape function of the circle.  

Shape function: thin foil 
Here is another example. Say we have a thin slab of material that is uniformly filled. Its FFT gives a 
central spot with a streak in the thin direction. 

 

Now if we use that  slab to be the shape function of a lattice of points, we see streaks about every 
reciprocal-lattice point extending in the thin direction. 
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Shape function: wedge 
This example is not so simple. In TEM, we often have a thin foil of non-uniform thickness. Let’s assume 
a uniform slope. The FFT gives one streak perpendicular to the top surface and another perpendicular to 
the bottom surface. 

 

If the wedge-shaped object contains a lattice, we expect a pair of streaks for each of the lattice points. 

 

We are pushing the limits of kinematical theory here a little bit. A full dynamical treatment, with the 
beam passing down through the two wedge interfaces, reveals that the two streaks do not actually cross. 
Instead, they veer away from each other. Even at the Bragg condition, then, we actually expect a 
diffraction spot from a wedge-shaped foil to split into two closely spaced spots. Assuming a two-beam 
condition for reflection g, the splitting in reciprocal space about the original location of g is given by 
sinφ ξ , where φ  is the wedge angle and ξ  is the extinction distance. The splitting is most pronounced 
for stronger reflections, which have small ξ , and large dynamical effects. 
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