
Two-beam intensity

   sin
eeff isT

eff

s T
T i

s



 

g

The general two-beam result for g is:
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We defined an effective excitation error for beam g:

The two-beam intensity is:
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Alternative form
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Alternatively, we could write the two-beam result for g as:



Variation with thickness/excitation error

pendellosung oscillations



Kinematical approximation
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Assume coupling only to the (undiminished) 0 beam,
the H-W equations give:

Integrate over thickness:

Kinematic diffracted intensity:
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This is essentially the substitution: 21 w w 



Interpretation
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//shape function

For small crystals, diffraction spots are broadened
by the Fourier transform of the shape function
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Dynamical vs. Kinematic



Limitations of kinematic theory
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Intensity has an upper limit 
of unity:
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Kinematic theory is only 
valid if:

Kinematic Theory works best far from the Bragg condition.



Relrods
Reciprocal-lattice rods extend normal to thin-foil plane



Diffraction from thin crystals

Intersection of relrod with Ewald sphere gives intensity



Shape function: circle
direct reciprocal
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Shape function: thin foil
direct reciprocal
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Shape function: wedge
direct reciprocal
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Dynamical theory: wedge
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Dynamical theory predicts spot splitting at the Bragg condition, too.


