Two-beam intensity

We defined an effective excitation error for beam g:
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The general two-beam result for g is:
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The two-beam intensity is:
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Alternative form

Alternatively, we could write the two-beam result for g as:
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Variation with thickness/excitation error
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Kinematical approximation

Assume coupling only to the (undiminished) 0 beam,
the H-W equations give:

Integrate over thickness:
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Kinematic diffracted intensity:
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This is essentially the substitution: St —> S 1+ W2 —> W

Applicable if



Interpretation

T[ e 2™z = ] (1)-e#dz = 3{L(2)}

z=0

L(z)= {1’ 0=z S_T /Ishape function
otherwise

L(s)=T-sinc(rsT)-e™"
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Wy =%-L(s)= .L(s)

For small crystals, diffraction spots are broadened
by the Fourier transform of the shape function



o=

Dynamical vs. Kinematic
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Limitations of kinematic theory
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Kinematic Theory works best far from the Bragg condition.
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Relrods

Reciprocal-lattice rods extend normal to thin-foil plane
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Diffraction from thin crystals

Intersection of relrod with Ewald sphere gives intensity




Shape function: circle
direct reciprocal
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Shape function: wedge
direct reciprocal
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Dynamical theory: wedge
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Dynamical theory predicts spot splitting at the Bragg condition, too.



