Two-beam intensity

We defined an effective excitation error for beam *g*:

$$s_{eff} \equiv \sqrt{s^2 + \frac{1}{\xi^2}}$$

The general two-beam result for **g** is:

$$\Psi_{g}(T) = i \frac{\sin\left(\pi s_{eff}T\right)}{s_{eff}\xi} e^{-\pi i sT}$$

The two-beam intensity is:

Alternative form

Alternatively, we could write the two-beam result for **g** as:

$$\psi_{\mathbf{g}}(T) = i \left(\frac{\pi T}{\xi}\right) \operatorname{sinc}\left(\pi s_{eff}T\right) e^{-\pi i s T}$$

$$I_{\mathbf{g}} = \left| \Psi_{\mathbf{g}} \left(T \right) \right|^{2} = \left(\frac{\pi T}{\xi} \right)^{2} \operatorname{sinc}^{2} \left(\pi s_{eff} T \right) = \left(\frac{\pi T}{\xi} \right)^{2} \operatorname{sinc}^{2} \left(\frac{\pi \sqrt{1 + w^{2}} T}{\xi} \right)$$

Variation with thickness/excitation error

pendellosung oscillations

Kinematical approximation

Assume coupling only to the (undiminished) **0** beam, the H-W equations give:

$$\frac{d\Psi_{g}}{dz} \approx \left(\frac{\pi i}{\xi_{g}}\right) \cdot (1) \cdot e^{-2\pi i s_{g} z} \qquad \left(\Psi_{0} = 1\right)$$

Integrate over thickness:

$$\Psi_{\mathbf{g}} = \left(\frac{\pi i}{\xi}\right) \cdot \int_{z=0}^{T} e^{-2\pi i s z} dz = \left(\frac{e^{\pi i s T} - e^{-\pi i s T}}{2s\xi}\right) \cdot e^{-\pi i s T} = i \left(\frac{\pi T}{\xi}\right) \operatorname{sinc}(\pi s T) e^{-\pi i s T}$$

Kinematic diffracted intensity:

$$I_{g} = \left|\psi_{g}\right|^{2} = \left(\frac{\pi T}{\xi}\right)^{2} \cdot \operatorname{sinc}^{2}\left(\pi sT\right) = \left(\frac{\pi T}{\xi}\right)^{2} \cdot \operatorname{sinc}^{2}\left(\frac{\pi wT}{\xi}\right)$$

This is essentially the substitution: $s_{eff} \rightarrow s$ $\sqrt{1 + w^2} \rightarrow w$ Applicable if $s \gg \frac{1}{\xi}$

Interpretation

$$\int_{z=0}^{T} e^{-2\pi i s z} dz = \int_{z=0}^{T} (1) \cdot e^{-2\pi i s z} dz = \Im \{ L(z) \}$$

$L(z) = \begin{cases} \\ \\ \end{cases}$	∫1,
	0,

otherwise

 $0 \le z \le T$

//shape function

$$L(s) = T \cdot \operatorname{sinc}(\pi s T) \cdot e^{-\pi i s T}$$

$$\Psi_{\mathbf{g}} = \frac{i\pi}{\xi} \cdot L(s) = \frac{i\lambda \cdot F_{\mathbf{g}}}{v} \cdot L(s)$$

For small crystals, diffraction spots are broadened by the Fourier transform of the shape function

Dynamical vs. Kinematic

Limitations of kinematic theory

Kinematic Theory works best far from the Bragg condition.

Relrods

Reciprocal-lattice rods extend normal to thin-foil plane

Diffraction from thin crystals

Intersection of relrod with Ewald sphere gives intensity

Shape function: circle

Shape function: thin foil

reciprocal

Shape function: wedge

direct

direct

reciprocal

reciprocal

Dynamical theory: wedge

Dynamical theory predicts spot splitting at the Bragg condition, too.