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Chapter 19-Kikuchi diffraction 

Changes in diffraction angle 
We often see diffraction peaks from reflections whose planes are not at the precise Bragg condition. So it 
seems like the scattering angle for those peaks may be a little off from what we expect using Bragg’s law. 
Let’s call the actual diffraction angle α . At the Bragg condition, it should be 2 Bα = θ .  

 

Even if we are not at the Bragg condition, the scattering is elastic, so we find that: 
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We can find specify the angle α  between the incident and scattered beams as follows: 
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We are usually concerned with ZOLZ reflections, with ⊥ gg s  : 

( ) 21sin 2 2
2

g
k

α = ⋅ g+ g s 2

2
12 sin 1

2

s

sg
k g

−

+

  α = ⋅ +    

g

g

 

When 0s =g , we get Bragg’s law 
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Away from the Bragg condition, we have 
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In TEM, the scattering angles are quite small, so we just keep the lowest-order correction: 
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This is a very small correction. Say we have a small beam tilt of φ . A previous result gives 
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So the correction is about 

( )22 B B Bα − θ ≈ θ ⋅ φ − θ  

Incoherent, diffuse scattering 
Elastic scattering can occur in any direction, though most of the scattering (of any type) is forward. We 
can see this from a simple calculation of the differential scattering cross-section of an atom using the 
Rutherford model: 

 

But even if the scattering is elastic, the coherence of an electron w.r.t. the incident beam decreases with 
every scattering event, because some energy gets transferred to the specimen. After multiple scattering 
events, our incident beam is accompanied by a diffuse “plume” of incoherent electrons. These still have 
close to the same energy as the incident beam, but they have lost their coherence. We can imaging this 
source of incoherent electrons radiating outward from every point in the specimen, but concentrated in the 
forward direction. 

Kossel cones 
Since the diffusely scattered electrons are propagating in every direction (but mostly forward), some of 
them will be at an angle Bθ  w.r.t. a particular set of diffracting planes. The diffraction off these planes 
will also be at angle Bθ  from the planes. But there is not just one pair of incident/scattered wave rays at

Bθ  from the plane, but rather a whole cone of such rays. We can picture the cone with one of the planes 
(it doesn’t matter which one if we are far from the specimen) at its apex, oriented with the normal to the 
plane along its axis. In fact, there is another cone on the opposite side of the plane that also describes all 
possible pairs of incident/scattered wave vectors that are possible paths for Bragg scattering. These two 



3 
NANO 703-Notes 

cones are called Kossel cones. We might call the one extending in one direction the g Kossel cone and the 
opposite one the g  Kossel cone. The angle between them is 2 Bθ . 

 

Kossel cone construction 
Say the diffraction planes has 0x y= = , and the cone apex is at z L= − .The cones make an angle Bθ  
w.r.t. the Bragg plane, so they satisfy 
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Consider the intersection of the cones with a horizontal plane below the specimen at 0z = . The trace is 

2 2tan Bx y L= ± θ +  

This described hyperbolas in the + and - directions. If we are very close to the origin (small angles), 
expansion to lowest order gives: 
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This describes parabolas extending in opposite directions. If y  is small, they are just lines at 
tan Bx L= ± ⋅ θ . We can think of L  as the camera length. This describes where the traces of the cones in 

the diffraction pattern. 
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One thing to notice is that the Kossel cones tilt with the sample. We are not very concerned with the 
incident beam direction at this point, except to say that the diffuse scattering is strongest in the forward 
direction. 

Kikuchi diffraction 
The diffusely scattered electrons can diffract off of Bragg planes and contribute to diffraction patterns. 
This requires more than one scattering event: 1) incoherent, diffuse, elastic scattering (which may involve 
multiple scattering events, and is strongest in the forward direction), followed by 2) coherent, elastic 
scattering (only one scattering event needed). 

 

Say a set of planes is oriented at the Bragg condition w.r.t. the incident beam. In addition to the 
diffraction spot from these planes, we also expect the diffuse electrons propagating in the forward 
direction to Bragg diffraction from these planes. Since these are distributed on the Kossel cone, the 
scattered intensity should form a bright line segment passing through the diffracted spot. This is called the 
“excess” Kikuchi line. The original, forward direction will have lost the contribution from those diffuse 
electrons, so there will be a dark “defect” (or “deficient”) Kikuchi line passing through 0. The region in 
between these lines is called the Kikuchi “band”. We can always think of the Kikuchi band is rotating 
with the sample. The projection of the Bragg planes is in the middle of the band, halfway between the 
excess and defect Kikuchi lines. 

Example: Si<111> 
Kikuchi bands can be seen in the selected-area diffraction pattern below taken from a Si crystal on a 
<111> zone axis. The most prominent are the {220} Kikuchi bands. 
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Kikuchi bands 
We saw that diffraction spots move with the direct beam, whereas Kikuchi bands move with the sample. 
(Even though the diffraction spots don’t move with sample tilt, they do change intensity.) When we are at 
the Bragg condition for reflection g, there g Kossel cone traces out the excess Kikuchi line, and the g  
Kossel cone traces out the defect Kikuchi line. But the excess/defect assignment is fungible; when we 
rotate the sample to the Bragg condition for reflection g , the g  Kossel cone traces out the excess 
Kikuchi line and the g Kossel cone traces out the defect Kikuchi line. On axis, the excess/defect 
distinction is lost. We still see a Kikuchi band of width 2 Bθ  that is symmetrical. 

 

Tracking a Kikuchi band 
The Kikuchi bands are especially useful when we need to orient a specimen precisely on a particular zone 
axis, or reorient from one zone to another. The Kikuchi bands always run perpendicular to the g  vector 
they are associated with. If we find a g  vector that is shared by the two zones, we can follow its Kikuchi 
band like a highway leading between the zones. If we lose track if where the band is, we can just tilt the 
sample slightly to reach the Bragg condition for g. Then, the excess and defect lines will be very clearly 
visibly and the search can be resumed. 
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Note that, whereas we can see Kikuchi bands in selected-area diffraction patterns, they are even stronger 
in convergent-beam diffraction patterns, which we will discuss shortly. Some examples here use a 
convergent beam, rather than a parallel beam. 

Kikuchi map: fcc 
The Kikuchi bands connect various directions, like straight highways looping around the surface of a 
globe, similar to lines of longitude, although not all pass through the poles. We could plot them in various 
projections. Usually we pick one reference zone axis and show the bands connecting that axis to other 
major zone axes. A Kikuchi map for an fcc crystal is shown below. The [001] zone is the starting point. 
We can connect from there to the [011] zone that is 45° away by following the 200 (or 400) Kikuchi 
band. (Notice that, according to the Weiss zone law, 200 resides on both zones.). Or we could find the 
[101] zone, instead, by tilting 45° about an axis 90° from the first one, following the 020 (or 040) band to 
the [101] zone axis. The [111] zone is 54.7° from the [001] zone, following the 220  band.  
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If we look at this map carefully, we see that the 022  band must connect the [111] zone to the [011] zone. 
Also, the 202  band connects [111] to the [101] zone. But these bands don’t seem to point in the right 
directions on this map, because we had to distort some of the angles on the directional sphere to plot them 
on a single map.  

Orienting on the zone axis with Kikuchi lines 
Say we are near a low-index zone axis and want to tilt the specimen so that the beam is parallel to the 
zone axis. We will see diffraction spots, including the direct beam, at roughly fixed positions, regardless 
of the sample tilt. But the Kikuchi lines will move with the sample tilt. The actual location of the zone 
axis is where the Kikuchi bands intersect, not where the direct beam is. As we tilt the sample, the Kikuchi 
bands will move with it, so we can observe both the zone axis location and the beam direction, bringing 
them into alignment. 

 

Measuring sg 

We said the excess Kikuchi line passes through the reflection at the Bragg condition ( 0s =g ). On the 
zone axis, the excess line is just the g line, passing halfway between g and 0, and the reciprocal-lattice 
point g is outside the Ewald sphere ( 0s <g ).  
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Apparently, if the g line passes on the other side of the g reflection, 0s >g . In other words, the position of 
the g line relative to the g reflection provides a way to measure sg . 

 

For small tilt angles, the relationship is linear. If the g line is offset from the reflection by a reciprocal-
space distance x , the tilt from the zone axis is: 
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For small angles, the excitation error varies as 
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Not surprisingly, the excitation error is proportional to x . We could write it as: 

2 Bs x≈ θ ⋅  


