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Chapter 20: Convergent-beam diffraction 

Selected-area diffraction: Influence of thickness 
Selected-area diffraction patterns don’t generally get much better when the specimen gets thicker. 
Sometimes a faint feature will be enhanced a bit that we may want to see, but mostly we just get more 
diffuse scattering and Kikuchi bands that are not especially revealing about the crystal structure. 

 

Selected-area vs. convergent-beam diffraction 
Convergent-beam diffraction is another useful mode of diffraction. Instead of sharp spots, CBED patterns 
give diffraction disks that may contain complicated intensity features. Each mode has some advantages. 

 

Selected-area diffraction patterns are easy to index, because the spots are nearly point-like. The sharp 
spots make it easy to measure d-spacing, since we can locate their centers precisely. And we can isolate 
low-angle features, such as superlattice diffraction satellites without too much trouble, because there is 
not much overlap among closely spaced diffraction features. 

Convergent-beam diffraction patterns generally contain more crystallographic, especially 3-D, 
information (though if may be challenging to extract some of that information.) CBED samples specific, 
nanoscale-sized areas, so we can acquire patterns from particular small features of interest. Also, since 
any tiny area is - in a sense - more uniform than a larger area, Kikuchi lines are usually sharper in CBED. 

Ray diagrams for SA and CB diffraction 
Changing from selected-area to convergent-beam diffraction is very easy. The optics after the sample 
should be identical, except that we don’t need the selected-are diffraction aperture. Above the sample, 
though, we want too converge the beam to a crossover on the sample, using the condenser lens, of course. 
usually, this is done in imaging mode so we can make sure the probe is small and focused. It is sometimes 
necessary to correct the condenser stigmation here, if the beam spot does not look very circular. I 
wouldn’t recommend doing this on the CCD camera, because the intensity of the spot is very high. (It’s 
about the same as the direct beam in diffraction mode using parallel illumination with no selected-are 
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aperture in.) Then, as usual, we switch to diffraction mode, which causes the intermediate lens to focus on 
the BFP of the objective lens. From the ray diagram, it is less obvious that the BFP represents the 
diffraction pattern in this case, but we the camera length has been calibrated for these settings, so we 
especially do not want to change the objective lens focus at this point. The IL can be focused a bit, but it 
is even tricky to know exactly when a  CBED pattern is focused. 

 

Example: Si<111> 
Compare a selected-area pattern and a CBED pattern acquire from the same sample under nominally 
identical conditions. We see stronger Kikuchi lines, because the variations in crystal orientation that 
might smear them out in selected-area diffraction are much smaller in the small volume sampled by the 
convergent probe. The HOLZ rings are sharper, too, and almost continuous around their circumference. 
This is because the ring is strongest in CBED wherever a HOLZ reflection reaches the Bragg condition, 
not where the relrod crosses the Ewald sphere. Another result is that the diameter of the HOLZ ring is 
more well-defined for measurement. 

 

The features within the CBED disks have information, too, that we will analyze shortly. 

Influence of convergence angle 
The diameter of the CBED disks corresponds to the convergence angle α  of the incident probe. We saw 
that the most immediate influence on α  is the condenser aperture diameter, though it can also be 
controlled using the condenser lens settings. The separation of the disks depends on the crystal structure, 
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so that shouldn’t change if we change α . Normally, we don’t want the disks to overlap (though we 
probably want their diameters to be as large as possible). If the disks don’t overlap, the pattern is called a 
Kossel-Mollenstedt (K-M) pattern. 

 

For larger a, the disks will overlap, producing a Kossel (K) pattern. If the electron source is highly 
coherent, there can be interesting information about the relative phases of the structure factors in the 
overlap region. Unfortunately, the amount of coherence has to be very high, or else the crystal’s unit cell 
very large, to see these effects. So with a thermionic electron source, we usually acquire CBED patterns 
with a K-M condition, instead. 

Influence of condenser aperture size 
The outer edge of the CBED disks is defined by the CA, so it directly affects the disk diameter.  (In 
principle, the all have same diameter in a single pattern.) We know the CA doesn’t affect the camera 
length., and changing to a smaller-sized CA doesn’t change the intensity variations with each disk, except 
to define where its hard edge appears. Now, if we orient on a zone axis, we might notice that the outer 
edges of the higher-angle reflections are not so sharply defined, because the excitation of the spot gets 
weaker moving outward. 
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CBED disks and HOLZ rings 
In CBED, we can’t even think about our reliable, old Ewald sphere in the same way. Because there is a 
range of incident beam directions, there is a range of excitation points, with an Ewald sphere essentially 
center around each of these points. The excitation points trace out an spherical section in reciprocal space. 
The crystal and its relrods are still the same. 

 

CBED features (I) 
The features in a CBED patterns depend on where we look and the camera length we use. On low-index 
zone axes, we see roughly sinusoidal intensity variations, particularly in the 0 and low-angle g beams. 
These are called K-M fringes. They are really the pendellosung oscillations we discussed before, due to 
the range of orientations of the beam with respect to the crystal and changes in excitation for each 
incident direction. 

Higher-index patterns tend to show more HOLZ rings that can be found at short camera length. At longer 
camera length, the features in the 0 disk, which is called the “bright-field” disk, are called HOLZ lines. 

 

CBED features (II) 
HOLZ lines that appear in the BF disk on high-index (lower symmetry) zone axes are very sharp, linear 
features. If the sample is thick enough, we cans ee how these connect to HOLZ Kikuchi lines that 
continue outside of the disks. The HOLZ lines within the disk should really be called “defect HOLZ 



5 
NANO 703-Notes 

Bragg lines”. They result from Bragg diffraction into a segment of a HOLZ ring at some higher angle, 
leaving a dark, shadow-like trace showing the where the diffracted electrons came from. Though they are 
related to the Kikuchi lines, they are the results of just the usual coherent Bragg diffraction, not 
incoherent, Kikuchi diffraction. The fact that the lines can be very sharp and intersect in an intricate 
pattern makes them very useful for precision measurements. The trajectories of the HOLZ lines are very 
sensitive to slight changes in lattice parameter. 

 

 

CBED bright-field patterns 
The intensity within the 0, or BF disk, is called the “bright-field” CBED pattern. We can find the equation 
for a HOLZ line within the BF disk fairly easily. It occurs where the Bragg condition for some HOLZ 
reflection g  is satisfied, so for that reflection, the incident beam wave vector has 

k = +k g  

If we square this, we get the equation 

2

0
2x x y y z z
gg k g k g k= ⋅ + ⋅ + ⋅ +  

In the BF disk, the tilt of our incident beam must be less than α , which is usually very small (tens of 
mrad, at most). So we can approximate zk k≈ − . Then we have an equation for a line in the x-y plane 
with coordinates ( ),x yk k   

2

2x x y y z
gg k g k g k⋅ + ⋅ = − ⋅ −  

By determining the equation for the line, we can find g  and/or k , allowing refinement of the crystal 
structure or beam energy, respectively. 
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ZAP indexing example: sc [001] 
We looked at indexing ZOLZ patterns. We will refer to the diagram of a diffraction pattern from Laue 
zone of any order as a zone-axis pattern (ZAP). The Miller indices hk  for the reflections on any [ ]uvw  
ZAP satisfy the Weiss zone law: 

hu kv w N+ + =  

where N  is an integer. (It is usually non-negative, in practice, because only the Laue zones with 0N ≥  
intersect the Ewald sphere.) 

 

The first example is a series of ZAPs from a sc crystal in [001] orientation. The zone law for any of these 
zones is simply N= . 

We know there are no restrictions on the hk  for allowed reflections from an sc crystal. The ZOLZ 
always contains the direct beam 000 . So the ZOLZ must have 0N = . So the zone law for this ZOLZ is 

0= . Also in this zone are 100, 010, and 110, and every combination of the form 0hk . 

Next consider 1N = . I usually put an ×  to locate the projected position of 0 in each ZAP. Are there any 
allowed reflections in this zone, i.e. 1= ? If we can find even one, then 1N =  is the FOLZ. Yes, there 
are some reflections. In fact every combination of the form 1hk  is in this zone, e.g., 011, 111. 

Next up is 2N = , with 2= . By the same reasoning, this is the SOLZ. 

ZAP indexing example: fcc [001] 
This one should be easy, because we have already indexed sc [001], so we just need to erase the 
systematic absences. We find that 001 is no longer allowed for 1N = , but we still have 111 and 131, so 

1N =  is still the FOLZ. The SOLZ has 002, with 2N = , so the assignment of the HOLZs as FOLZ, 
SOLZ, etc., doesn’t change. 
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ZAP indexing example: fcc [110] 
In this case, we have h k N+ = . In addition to 000, the ZOLZ (which always has 0N = ) contains 002
and 220 .  

 

What about  1N = ? Is it the FOLZ? We need to have 1h k+ = , but if hk are all even or all odd, there 
are no combinations of integers that satisfy this condition. So 1N =  is not a ZAP for fcc [110]. 

We then move on to 2N = . We can have 2h k+ = , no problem, e.g., 020, 200. So 2N =  is a ZAP - It is 
the FOLZ! 

Constructing HOLZ patterns example: sc [001] 
Correctly drawing the ZAP for a HOLZ takes some thought. One can work back up the beam axis (out of 
the page) by imagining other ZOLZs that are perpendicular to the our zone axis of interest. Some of these 
will contain reflections that are also in our HOLZ ZAP.  For example, if we want to find the [001] FOLZ, 
we can start with the [001] ZOLZ. The [100] ZOLZ is perpendicular to these, so it might contain some 
reflections in the [001] FOLZ. Those reflections reside in a systematic row of the [100] ZOLZ having 

1=  (e.g., 001, 011). Others can be found in the [0 10]  ZOLZ (e.g., 101). Once we have the identities 
and locations of three reflections in the [001] FOLZ, we can navigate around to ID the rest. 
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Projecting onto the ZOLZ 
We can decompose an RLV into components parallel and perpendicular to a HOLZ 

|| ⊥= +g g g   

For reflections in the HOLZ, we now that uvw N⋅ =r g . So   uvw N⊥⋅ =r g  and || 0uvw ⋅ =r g . We could write 

ˆ uvw
uvw

uvw
N H N H⊥ = ⋅ ⋅ = ⋅ ⋅

rg r
r

 

Now take the dot product and use the zone law to find the Laue-zone separation H  : 

uvw uvwN N H⊥⋅ = = ⋅ ⋅r g r , so 1
uvw

H =
r

 

Be aware, though, that some values of N may not correspond to Laue zones, so the actual separation 
could be an integer times H . 
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Cubic ZOLZ projection 
Cubic has some nice properties we can use to simplify HOLZ indexing. For one thing, the direct- and 
reciprocal-lattice basis vectors are related by 2

i ia= ⋅b a . So the direct-lattice vector 1 2 3uvw u v w= + +r a a a  
that defines our zone axis is necessarily parallel to a RLV.  

( )2
1 2 3uvw a u v w= ⋅ + +r b b b  

Now we can find the Miller indices for the perpendicular component ⊥g  of an RLV in a particular HOLZ: 

2

2
uvw

uvw

N N a
⊥

⋅ ⋅
= =

rg
r

( )1 2 3

2

u v w
a

⋅ + +b b b
( )

1 2 32 2 2
h k

u v w
⊥ ⊥ ⊥= + +

⋅ + +
b b b  

We then now that the center of the HOLZ (aligned with 000) has Miller indices 

( )
( )

2 2 2

N uvwhk
u v w

⊥
⋅

=
+ +

   

The in-plane components of the Miller indices are then 

( ) ( ) ( )||hk hk hk ⊥= −    

 


