CBED Features

Influence of Thickness

$\mathrm{K}-\mathrm{M}$ fringe frequency increases with thickness

Intensity oscillation in CBED disk (I)

At a two-beam condition:

$$
\begin{aligned}
& I_{\mathbf{g}}=\left[\frac{\sin \left(\pi s_{e f f} T\right)}{s_{e f f} \xi}\right]^{2} \\
& s_{e f f} \equiv \sqrt{s^{2}+\left(\frac{1}{\xi^{2}}\right)} \\
& I_{0}=1-\left[\frac{\sin \left(\pi s_{e f f} T\right)}{s_{e f f} \xi}\right]^{2}
\end{aligned}
$$

Frequency of intensity oscillation depends on T, ξ

Intensity oscillation in CBED disk (II)

Oscillations arise from variation in s_{g} with beam tilt

Experiment shows absorption effects

bright-field disk shows
"anomolous absorption"

$$
s=\frac{g}{k} \cdot x
$$

x measures distance to Bragg condition

Absorption

Incoherent and inelastic scattering result in attenuation

What if $\Phi(\mathbf{r})$ is complex?

Simple Case:

$$
\begin{aligned}
& \Phi(\mathbf{r})=\Phi_{0}+i \Phi_{0}^{\prime} \quad U(\mathbf{r})=U_{0}+i U_{0}^{\prime} \\
& {\left[\nabla^{2}+4 \pi^{2}\left(k^{2}+U_{0}+i U_{0}^{\prime}\right)\right] \psi(\mathbf{r})=0}
\end{aligned}
$$

Solution is an attenuated plane wave:

$$
\left.\begin{array}{l}
\psi(\mathbf{r})=\mathrm{e}^{2 \pi i\left(\mathbf{K}+\mathbf{i} \mathbf{K}^{\prime}\right) \mathbf{r}}=\mathrm{e}^{2 \pi \mathbf{i} \cdot \mathbf{r}} \mathrm{e}^{-2 \pi \mathbf{K}^{\prime} \cdot \mathbf{r}} \quad \nabla^{2} \psi(\mathbf{r})=\left(K^{2}-K^{\prime 2}+2 i K K^{\prime}\right) \psi(\mathbf{r}) \\
K^{2}-K^{\prime 2}=k^{2}+U_{0} \\
2 K K^{\prime}=U_{0}^{\prime}
\end{array}\right\} \quad \text { Solve for } K \text { and } K^{\prime}
$$

Absorption in a crystal

$$
\Phi(\mathbf{r}) \rightarrow \Phi(\mathbf{r})+i \Phi^{\prime}(\mathbf{r}) \quad U(\mathbf{r}) \rightarrow U(\mathbf{r})+i U^{\prime}(\mathbf{r})
$$

The operator \tilde{A} becomes non-Hermitian:

$$
\tilde{\mathrm{A}} \rightarrow \tilde{\mathrm{~A}}+i \tilde{\mathrm{~A}}^{\prime}
$$

The eigenvalues become complex:

$$
\left(\tilde{\mathrm{A}}+i \tilde{\mathrm{~A}}^{\prime}\right)\left|\psi^{(j)}\right\rangle=\left(\gamma^{(j)}+i \gamma^{(j)}\right)\left|\psi^{(j)}\right\rangle
$$

This leads to attenuation of the Block waves:
$\psi^{(j)}(\mathbf{r}) \rightarrow\left\{\sum_{\mathrm{g}} C_{\mathrm{g}}^{(j)} \mathrm{e}^{2 \pi \mathrm{~g} \cdot \mathbf{r}}\right\} \mathrm{e}^{2 \pi \mathbf{i} \cdot \mathbf{r} \cdot} \mathrm{e}^{2 \pi i \gamma^{(j)}} \mathrm{e}^{-2 \pi \gamma^{(j)}}$
Non-Hermitian: $\quad A_{g_{2}, g_{1}}+i A_{g_{1}, g_{2}}^{\prime} \neq\left(A_{g_{2}, g_{1}}+i A_{g_{2}, g_{1}}^{\prime}\right)^{*}$
How to diagonalize a non-Hermitian matrix?

Treat Absorption as a perturbation

$$
\begin{aligned}
& \text { Typically } \quad \Phi_{\mathrm{g}}^{\prime} \approx(0.10) \Phi_{\mathrm{g}} \\
& \tilde{A}^{\prime}=\left(\begin{array}{cccc}
\frac{1}{2 \xi_{0}^{\prime}} & \frac{1}{2 \xi_{g_{1}}^{\prime}} & \cdot & \frac{1}{2 \xi_{\mathbf{g}_{n-1}}^{\prime}} \\
\frac{1}{2 \xi_{\mathrm{g}_{1}}^{\prime *}} & \frac{1}{2 \xi_{0}^{\prime}} & \cdot & \frac{1}{2 \xi_{g_{n-1}-\mathbf{g}_{1}}^{\prime}} \\
\cdot & \cdot & \cdot & \cdot \\
\frac{1}{2 \xi_{\mathbf{g}_{n-1}}^{\prime *}} & \frac{1}{2 \xi_{\mathbf{g}_{1}-\mathrm{g}_{n-1}}^{\prime}} & \cdot & \frac{1}{2 \xi_{0}^{\prime}}
\end{array}\right)
\end{aligned}
$$

We can compute the attenuation coeffs. as a first-order perturbation:

$$
\gamma^{\prime(j)} \approx\left\langle\psi^{(j)}\right| \tilde{A}^{\prime}\left|\psi^{(j)}\right\rangle=\sum_{\mathbf{g}, \mathbf{g}^{\prime}}\left[C_{\mathbf{g}}^{(j)}\right]^{*} \cdot\left(\frac{1}{2 \xi_{\mathbf{g}-\mathbf{g}^{\prime}}^{\prime}}\right) \cdot C_{\mathbf{g}^{\prime}}^{(j)}
$$

Two-beam simulation

$$
B F
$$

$$
\begin{aligned}
& \xi_{0}=50 \mathrm{~nm} \\
& \xi_{g}=100 \mathrm{~nm} \\
& T=250 \mathrm{~nm} \\
& \alpha=0.10
\end{aligned}
$$

With absorption

HOLZ ring radius

N^{th} HOLZ ring:

$$
\begin{aligned}
& k=\sqrt{(k-N H)^{2}+G_{N}{ }^{2}} \\
& G_{N}=N H \sqrt{\frac{2 k}{N H}-1} \approx \sqrt{2 k N H}
\end{aligned}
$$

$$
G_{1} \approx \sqrt{\frac{2 H}{\lambda}}
$$

$$
G_{2} \approx 2 \sqrt{\frac{H}{\lambda}}
$$

Find H from HOLZ ring diameter

Example: Si [001] CBED pattern

$$
E=125 \mathrm{KeV}
$$

Find H :

$$
\begin{gathered}
N H=\frac{1}{\lambda}-\sqrt{\frac{1}{\lambda^{2}}-G_{N}^{2}}\left[\approx \frac{\lambda\left(G_{N}\right)^{2}}{2}\right] \\
2 G_{1}=67.9 \mathrm{~nm}^{-1} \rightarrow G_{1}=34.0 \mathrm{~nm}^{-1} \rightarrow N H=1.89 \mathrm{~nm}^{-1}
\end{gathered}
$$

We found that $\quad H=\frac{1}{\left|\mathbf{r}_{u v w}\right|}$
fcc [001]:
FOLZ has $N=1$

$$
\begin{aligned}
&\left|\mathbf{r}_{u r w}\right|=1 / a \\
& \rightarrow H=1 / a \quad \rightarrow a=0.53 \mathrm{~nm}
\end{aligned}
$$

Actual value (Si): $\quad a=0.54 \mathrm{~nm}$

Symmetry in CBED patterns

From either a K-M or K pattern: WP: Whole-pattern symmetry

From a K-M pattern:

BF: (000) disk symmetry, including HOLZ lines
DF: (hkl) disk symmetry

Si [111]

Polarity determination

Dynamical electron diffraction allows determination of film polarity
J. Tafto, and J.C.H. Spence, J. C. H., 1982, J. Appl. Crystallogr., 15, p. 60.

Large-angle CBED

1) focus probe on sample
2) raise sample height
3) inset diffraction aperture around 0 spot
4) switch to diffraction mode
5) increase convergence angle

