
Planar defects: orientation and types
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R: Displacement Vector



Translation: influence on Fourier coeff’s
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Phase factor change for each Fourier component
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Translation: influence on Bloch waves
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Bloch-wave coefficients are altered only if g ⋅R ≠ 0

Above defect:

Below defect:



Scattering matrix (two-beam)
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( ) 1Scattering Matrix:  ( )P z C z C−= ⋅Γ ⋅  

The dynamical diffracted intensity can be summarized using matrices:
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Propagation across a planar defect (I)
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Same eigenvalues: Different Bloch wave coefficients:
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Below the fault:
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Propagation across a planar defect (II)
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Boundary condition at the buried phase boundary interface (z = t):

( )
( ) ( ) ( )

( ) ( ) ( )
( )
0

( )
0

z t
P z t P z t P t

z t
′ ′Ψ Ψ Ψ     

′ ′= − ⋅ = − ⋅ ⋅          ′ ′Ψ Ψ Ψ     

0 0 0

g g g

  

( )
( )
0 1
0 0

Ψ   
=    Ψ   

0

g

( )
( ) ( )

1
( )

0
T

P T t P t
T

′Ψ   ′= − ⋅ ⋅    ′Ψ   

0

g

 



Depiction of APB propagation via step-flow-driven crystal growth

180° phase shift in ordering sequence

Fg = fA − fB ′Fg = fB − fA = −Fg

Antiphase boundary
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Propagation across an APB (Ι)
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General two-beam result:

Scattering matrices:



Propagation across an APB (ΙΙ)
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Strong-beam result:

Above the APB: 

Below the APB: 
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Define:



Propagation across an APB (IΙΙ)
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Diffracted-beam amplitudes:

Apply boundary condition at entrance surface:



Diffracted Intensity Across an APB
Strong-Beam Case:

( ) ( )2 2sinz zΨ = π ξg ( ) ( )2 2sin 2z t z′Ψ = π − ξ  g

Above: Below:



DF images of inclined APBs: influence of tilt



Inclined APBs: two-beam analysis
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Stacking faults in fcc crystals

Two types:

Intrinsic and Extrinsic

intrinsic extrinsic
[111]



Stacking fault geometry

Partial dislocations border fault

Fault is observed with g ⋅R ≠ 0



Stacking fault images

Sometimes hard to distinguish threading dislocations from partial dislocations

[001]
Plan view

{220} DF

[110]
Cross section

{220} DF



Twin boundaries in fcc crystals

Give rise to extra spots at 1/3(111) positions

1/3(111) dark-field image

[110]



Origin of 1/3 position spots

180° Rotation about (111) directions

Dynamical diffraction gives complete pattern

[110] fcc
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