## Planar defects: orientation and types



Translation:
$\Phi^{\prime}(\mathbf{r})=\Phi(\mathbf{r}-\mathbf{R})$
R: Displacement Vector

Rotation:
$\Phi^{\prime}(\mathbf{r})=\Phi(\tilde{M} \mathbf{r})$
$\tilde{M}$ : Rotation Matrix

## Translation: influence on Fourier coeff's

Translation:

$$
\begin{aligned}
& U^{\prime}(\mathbf{r})=U(\mathbf{r}-\mathbf{R}) \\
& U^{\prime}(\mathbf{r})=\sum_{\mathbf{g}} U_{\mathbf{g}}^{\prime} \mathrm{e}^{2 \pi i \mathbf{g} \cdot \mathbf{r}}
\end{aligned}
$$



Phase factor change for each Fourier component

$$
U_{\mathbf{g}}^{\prime}=U_{\mathbf{g}} \mathrm{e}^{-2 \pi \mathrm{i} \cdot \mathbf{R}}=U_{\mathbf{g}} \mathrm{e}^{i \alpha}
$$

$$
\text { APB: } \quad U_{\mathrm{g}}^{\prime}=-U_{\mathrm{g}}
$$

$$
\left(\alpha=180^{\circ}\right)
$$

## Translation: influence on Bloch waves

Above defect:

$$
\psi^{(j)}(\mathbf{r})=\mathrm{e}^{2 \pi i \mathbf{k}^{(j)} \mathrm{r}} \cdot \sum_{\mathrm{g}} C_{\mathrm{g}}^{(j)} \mathrm{e}^{2 \pi i \mathrm{~g} \cdot}
$$

Below defect:

$$
\begin{aligned}
& \psi^{\prime(j)}(\mathbf{r})=\psi^{(j)}(\mathbf{r}-\mathbf{R}) \\
&=\mathrm{e}^{2 \pi \mathbf{k}^{(j) \cdot(\mathbf{r}-\mathbf{R})} \cdot \sum_{\mathbf{g}} C_{\mathbf{g}}^{(j)} \mathrm{e}^{2 \pi \mathbf{i} \mathbf{g}(\mathbf{r}-\mathbf{R})}} \\
& \psi^{(j)}(\mathbf{r})=\mathrm{e}^{2 \pi \mathbf{k}^{(j) \cdot(\mathbf{r}-\mathbf{R})} \cdot \sum_{\mathbf{g}} C_{\mathbf{g}}^{(j)} \mathrm{e}^{2 \pi i \mathbf{g} \cdot \mathbf{r}}} \\
& C_{\mathbf{g}}^{\prime(j)}=C_{\mathbf{g}}^{(j)} \mathrm{e}^{-2 \pi \mathbf{i} \cdot \mathbf{R}}=C_{\mathbf{g}}^{(j)} \mathrm{e}^{i \alpha}
\end{aligned}
$$

Bloch-wave coefficients are altered only if

$$
\mathbf{g} \cdot \mathbf{R} \neq 0
$$

## Scattering matrix (two-beam)

The dynamical diffracted intensity can be summarized using matrices:

$$
\left.\left.\begin{array}{l}
\binom{\Psi_{0}(z)}{\Psi_{\mathbf{g}}(z)}=\left(\begin{array}{ll}
C_{0}^{(1)} & C_{0}^{(2)} \\
C_{\mathbf{g}}^{(1)} & C_{\mathbf{g}}^{(2)}
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{e}^{2 \pi i i^{(1)} z} & 0 \\
0 & \mathrm{e}^{2 \pi i i^{(2)} z}
\end{array}\right) \cdot\binom{\varepsilon^{(1)}}{\varepsilon^{(2)}}=\tilde{C} \cdot \tilde{\Gamma}(z) \cdot\binom{\varepsilon^{(1)}}{\varepsilon^{(2)}} \\
\binom{\Psi_{0}(0)}{\Psi_{\mathbf{g}}(0)}=\tilde{C} \cdot\binom{\varepsilon^{(1)}}{\varepsilon^{(2)}} \\
\varepsilon^{(2)}
\end{array}\right)=(\tilde{C})^{-1} \cdot\binom{\Psi_{0}(0)}{\Psi_{\mathbf{g}}(0)}, \begin{array}{l}
\Psi_{0}(z) \\
\Psi_{\mathbf{g}}(z)
\end{array}\right)=\tilde{C} \cdot \tilde{\Gamma}(z) \cdot(\tilde{C})^{-1} \cdot\binom{\Psi_{0}(0)}{\Psi_{\mathbf{g}}(0)}, ~ \$
$$

Scattering Matrix: $\tilde{P}(z)=\tilde{C} \cdot \tilde{\Gamma}(z) \cdot \tilde{C}^{-1}$

$$
\binom{\Psi_{0}(z)}{\Psi_{g}(z)}=\tilde{P}(z) \cdot\binom{\Psi_{0}(0)}{\Psi_{g}(0)}
$$

## Propagation across a planar defect (I)

$\quad$ Below the fault: $\quad\binom{\Psi_{0}^{\prime}(z)}{\Psi_{g}^{\prime}(z)}=\tilde{C}^{\prime} \cdot \tilde{\Gamma}^{\prime}(z-t) \cdot\binom{\varepsilon^{(1)}}{\varepsilon^{\prime(2)}}$
Same eigenvalues:
Different Bloch wave coefficients:

$$
\begin{aligned}
\Gamma^{\prime}(z-t)=\Gamma(z-t)=\left(\begin{array}{cc}
\mathrm{e}^{2 \pi i \gamma^{(1)}(z-t)} & 0 \\
0 & \mathrm{e}^{2 \pi i \gamma^{(2)}(z-t)}
\end{array}\right) & \tilde{C}^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{-i \alpha}
\end{array}\right) \cdot \tilde{C} \\
\binom{\Psi_{0}^{\prime}(t)}{\Psi_{\mathbf{g}}^{\prime}(t)}=\tilde{C}^{\prime} \cdot\binom{\varepsilon^{\prime(1)}}{\varepsilon^{\prime(2)}} & \binom{\varepsilon^{(1)}}{\varepsilon^{\prime(2)}}=\left(\tilde{C}^{\prime}\right)^{-1} \cdot\binom{\Psi_{0}^{\prime}(t)}{\Psi_{\mathbf{g}}^{\prime}(t)}
\end{aligned}
$$

Scattering Matrix: $\tilde{P}^{\prime}(z-t)=\tilde{C}^{\prime} \cdot \tilde{\Gamma}^{\prime}(z-t) \cdot\left(\tilde{C}^{\prime}\right)^{-1}$

$$
\binom{\Psi_{0}^{\prime}(z)}{\Psi_{\mathbf{g}}^{\prime}(z)}=\tilde{P}^{\prime}(z-t) \cdot\binom{\Psi_{0}^{\prime}(t)}{\Psi_{g}^{\prime}(t)}
$$

## Propagation across a planar defect (II)

Boundary condition at the buried phase boundary interface $(z=t)$ :

$$
\begin{gathered}
\binom{\Psi_{0}^{\prime}(t)}{\Psi_{\mathrm{g}}^{\prime}(t)}=\binom{\Psi_{0}(t)}{\Psi_{\mathbf{g}}(t)}=\tilde{P}(t) \cdot\binom{\Psi_{0}(0)}{\Psi_{\mathbf{g}}(0)} \\
\binom{\Psi_{0}^{\prime}(z)}{\Psi_{\mathrm{g}}^{\prime}(z)}=\tilde{P}^{\prime}(z-t) \cdot\binom{\Psi_{0}^{\prime}(t)}{\Psi_{\mathrm{g}}^{\prime}(t)}=\tilde{P}^{\prime}(z-t) \cdot \tilde{P}(t) \cdot\binom{\Psi_{0}(0)}{\Psi_{\mathbf{g}}(0)} \\
\qquad\binom{\Psi_{0}(0)}{\Psi_{\mathrm{g}}(0)}=\binom{1}{0} \\
\binom{\Psi_{0}^{\prime}(T)}{\Psi_{\mathrm{g}}^{\prime}(T)}=\tilde{P}^{\prime}(T-t) \cdot \tilde{P}(t) \cdot\binom{1}{0}
\end{gathered}
$$

## Antiphase boundary

$180^{\circ}$ phase shift in ordering sequence


Depiction of APB propagation via step-flow-driven crystal growth

## Propagation across an APB (I)

General two-beam result:

$$
\Gamma(z)=\mathrm{e}^{\pi i w z / \xi} \cdot\left(\begin{array}{cc}
\mathrm{e}^{\pi i \sqrt{1+w^{2}} z / \xi} & 0 \\
0 & \mathrm{e}^{-\pi i \sqrt{1+w^{2}} z / \xi}
\end{array}\right) \quad \begin{aligned}
& w=1 / s \xi \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

$$
\tilde{C}=\left(\begin{array}{cc}
\sin (\beta / 2) & -\cos (\beta / 2) \\
\cos (\beta / 2) & \sin (\beta / 2)
\end{array}\right) \quad \tilde{C}^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot \tilde{C}=\left(\begin{array}{cc}
\sin (\beta / 2) & -\cos (\beta / 2) \\
-\cos (\beta / 2) & -\sin (\beta / 2)
\end{array}\right)
$$

Scattering matrices:

$$
\tilde{\mathrm{P}}(z)=\tilde{\mathrm{C}} \cdot \tilde{\Gamma}(z) \cdot \tilde{\mathrm{C}}^{-1} \quad \tilde{\mathrm{P}}^{\prime}(z-t)=\tilde{\mathrm{C}}^{\prime} \cdot \tilde{\Gamma}^{\prime}(z-t) \cdot\left(\tilde{\mathrm{C}}^{\prime}\right)^{-1}
$$

## Propagation across an APB (II)

Strong-beam result:

$$
\gamma^{(1,2)}= \pm 1 / 2 \xi
$$

$$
\Gamma(z)=\left(\begin{array}{cc}
\mathrm{e}^{\pi i z / \xi} / 5 & 0 \\
0 & \mathrm{e}^{-\pi i z / \xi}
\end{array}\right) \quad \tilde{\mathrm{C}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad \quad \tilde{\mathrm{C}}^{\prime}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right)
$$

Above the APB: $\quad \tilde{\Gamma}(t)=\left(\begin{array}{cc}\mathrm{e}^{i a} & 0 \\ 0 & \mathrm{e}^{-i a}\end{array}\right) \quad$ Define: $\quad a=\pi t / \xi \quad b=\pi T / \xi$

$$
\tilde{\mathrm{P}}(t)=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{e}^{i a} & 0 \\
0 & \mathrm{e}^{-i a}
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
\cos (a) & i \sin (a) \\
i \sin (a) & \cos (a)
\end{array}\right)
$$

Below the APB: $\quad \tilde{\Gamma}(T-t)=\left(\begin{array}{cc}\mathrm{e}^{i(b-a)} & 0 \\ 0 & \mathrm{e}^{-i(b-a)}\end{array}\right)$

$$
\tilde{P}^{\prime}(T-t)=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
\mathrm{e}^{i(b-a)} & 0 \\
0 & \mathrm{e}^{-i(b-a)}
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{cc}
\cos (b-a) & -i \sin (b-a) \\
-i \sin (b-a) & \cos (b-a)
\end{array}\right)
$$

## Propagation across an APB (III)

Apply boundary condition at entrance surface: $\quad \tilde{\mathrm{P}}(t) \cdot\binom{1}{0}=\binom{\cos (a)}{i \sin (a)}$

$$
\tilde{\mathrm{P}}(T-t) \cdot \tilde{\mathrm{P}}(t) \cdot\binom{1}{0}=\left(\begin{array}{cc}
\cos (b-a) & -i \sin (b-a) \\
-i \sin (b-a) & \cos (b-a)
\end{array}\right) \cdot\binom{\cos (a)}{i \sin (a)}=\binom{\cos (2 a-b)}{i \sin (2 a-b)}
$$

Diffracted-beam amplitudes: $\quad\binom{\Psi_{0}^{\prime}(T)}{\Psi_{\mathrm{g}}^{\prime}(T)}=\binom{\cos [\pi(2 t-T) / \xi]}{i \sin [\pi(2 t-T) / \xi]}$

## Diffracted Intensity Across an APB

Strong-Beam Case:
Above:
Below:

$$
\left|\Psi_{\mathrm{g}}(z)\right|^{2}=\sin ^{2}(\pi z / \xi) \quad\left|\Psi_{\mathrm{g}}^{\prime}(z)\right|^{2}=\sin ^{2}[\pi(2 t-z) / \xi]
$$



## DF images of inclined APBs: influence of tilt



GaInAs


## Inclined APBs: two-beam analysis



## Stacking faults in fcc crystals

Two types:
Intrinsic and Extrinsic
[111]


## Stacking fault geometry

Partial dislocations border fault


Fault is observed with $\mathbf{g} \cdot \mathbf{R} \neq 0$


## Stacking fault images

[001]
Plan view
\{220\} DF

[110]
Cross section
\{220\} DF


Sometimes hard to distinguish threading dislocations from partial dislocations

## Twin boundaries in fcc crystals



Give rise to extra spots at $1 / 3(111)$ positions

## Origin of $1 / 3$ position spots

Matrix


Matrix + ( $\overline{1} 11$ ) variant

[110] fcc
$180^{\circ}$ Rotation about (111) directions

Dynamical diffraction gives complete pattern

Matrix $+(1 \overline{1} 1)$ variant


Matrix + Both Variants


