## Tomography background

-Ultramicrotomy of biological specimens
-Medical imaging
-Nobel Prize awarded for back-projection algorithms
-Radon transform developed in 1917


The Nobel Prize in Physiology or Medicine (1979)


Allan M. Cormack
"for the development of computer assisted tomography"


## Projection images



We are projecting some quantity:

$$
p_{\theta}(t)=\int_{s} f(x, y) \cdot d s
$$

In bright-field TEM, the projected quantity that can be related to the intensity is the absorption coef.:

$$
f(x, y)=\mu(x, y)
$$

The projection is then related to the intensity by:

$$
p_{\theta}(t)=-\ln \left[\frac{I_{\theta}(t)}{I_{0}}\right]=\int_{s} \mu(x, y) \cdot d s
$$

## Fourier-slice theorem (I)

The 2-D Fourier Transform (FT) of each projection is equal to a 2-D slice of the FT of the complete 3-D object.

$$
\begin{gather*}
F\left(k_{x}, k_{y}\right)=\mathfrak{J}\{f(x, y)\}  \tag{2-Dexample}\\
F\left(k_{x}, 0\right)=\int_{x} \int_{y} f(x, y) \mathrm{e}^{2 \pi i\left[k_{x} x+(0) y\right]} \cdot d x \cdot d y  \tag{1-Dslice}\\
=\int_{x}\left[\int_{y} f(x, y) \cdot d y\right] \mathrm{e}^{2 \pi i k_{x} x} \cdot d x \\
F\left(k_{x}, 0\right)=\int_{x} P(x) \mathrm{e}^{2 \pi k_{x} x} \cdot d x=\mathfrak{J}\left[p_{\theta=0}(t=x)\right]
\end{gather*}
$$

We can Fourier transform each projection image:

$$
P_{\theta}(k)=\mathfrak{I}\left\{p_{\theta}(t)\right\}
$$

Then build up the FT of the projected quantity:

$$
\left\{p_{\theta}(t)\right\} \rightarrow\left\{P_{\theta}(k)\right\} \rightarrow F\left(k_{x}, k_{y}\right) \rightarrow f(x, y)
$$

## Fourier-slice theorem (II)

The Fourier Transform (FT) of a 1-D projection of a 2-D object is equal to a 1-D slice of the FT through the center of the complete 2-D object.


Tomogram artifacts

sparsely sliced

missing wedge

fft

fft


## Acquisition and reconstruction

Data Acquisition
Prepare Sample
Drop solution on TEM grid
Add gold fiducials (optional)
Acquire
Calibrate TEM auto-focus, auto tracking
Scan tilt: $\pm 70^{\circ}, 0.5-2^{\circ}$ increments


## Reconstruction

Reconstruct
Coarse align by cross-correlation
Fiducial tracking refinement (optional)
Compute reconstruction
Combine
Match A\&B-axis reconstructions Generate dual-axis tomogram


The grid is removed and rotated $90^{\circ}$ to acquire a second tilt series.


## Dual-Axis Tilt Series



## Back-projection example



## Stacking of In Spheres



## Analysis of PbSe octahedron


-Rocksalt (cubic) crystal structure -Pointed tips parallel to <100>

## Stacking of PbSe cubes



