
Significant Figures and Round-Off Criteria for Numerical Expressions 

Numerical expressions that represent the results of actual or simulated measurements should be conveyed 
using appropriate significant figures (SFs), to preserve the accuracy with which an actual (or 
hypothetical) resulting, calculated quantity is known. SFs are a notational device that imply an underlying 
appreciation for error propagation, in cases where more explicit expressions of the associated errors and 
their corresponding analysis is overly cumbersome or unnecessary. For example, the expression

24.3 cmL =  can be inferred to represent ( )24.30 0.05  cmL = ± , or ( )24.30 5  cmL = . 

Significant Figures 
The number of SFs in an expression is given by the total number of digits, counting from the highest-
order (left-most, non-zero) digit towards lower-order positions (i.e., to the right). This includes trailing 
zeros to the right of the decimal point (the fractional portion of the expression). However, if the 
expression contains no decimal point, trailing zeros are ambiguous, and are typically not considered SFs. 

When counting the number of SFs, the highest-order digit included in the sum must not be "0" or "1". 
Why is this? Consider, for example, the expressions 1 1.5 st =  and 2 8.5 st = . For 1t , the second digit 
("5") represents 0.5 1 50 %=  of the first digit ("1"); for 2t , the "5" represents only 0.5 8 6%=  of the 
"8". In this case, 1t  was expressed with one SF; 2t  was expressed with two SFs. Note that expressions 
such as 1, 10, and 610  essentially represent orders of magnitude, with no SFs. 

Think of it this way: For the sake of discussion, let's say that if a quantity has one SF, we would roughly 
expect to know its value within a range of about 10.1 10%=  of the best estimate. For two SFs, the range 
is about 20.1 1%= . We could write the quantities above as ( )1 1.50 0.05  st = ±  and ( )2 8.50 0.05  st = ± . 
We have 11.45 s 1.55 st≤ <  and 0.10 1.50 6.7%= , which rounds up to 10%, or one SF. But 

28.45 s 8.55 st≤ < , and 0.10 8.50 1.2%= , which rounds down to 1% or two SFs. 

Round Off 
It is usually necessary to round off a calculation result to convey the appropriate number of SFs. This is 
the process of removing figures that are not considered significant, and possibly altering the least 
significant figure (LSF) of the reported result. If the digit following the LSF is in the range 0 to 4, the LSF 
is unchanged; if the digit following the LSF is in the range 5-9, the LSF is increased by 1, in which case, 
if the LSF is a 9, the higher SFs may be affected. 

Examples: Various ways to express π  ( 3.14159265...π = ): 

1 SF: 3π =  

2 SF: 3.1π =  

5 SF: 3.1416π =  //The LSF was rounded up because the digit immediately to its right is a "9". 

6 SF: 3.14159π =  

It is important to avoid ambiguity in the number of SFs when expressing a quantity. For example, 
consider the expression: 

240 mmL =  



The number of SFs here is ambiguous, due to the trailing zero, with no SFs to the right of the decimal 
point. Three methods are available to remedy this ambiguity (assume the quantity is known to three SFs): 

1) Use scientific notation: 22.40 10  mmL = ×  

2) Change units: 24.0 cmL =  

3) Append a decimal point: 240. mmL =  

Method 
If we compute a quantity y  as a function of a measured quantity x , i.e. ( )y f x= , where x  has a small 
uncertainty xδ , we can usually find yδ  using 1st-order error analysis: 

dfy x
dx

δ = ⋅δ  

If the quantity depends on multiple variable, say ( )1 2, ,...y f x x= , we can compute the uncertainty 
contributions from each of these: 
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The combined uncertainty is estimated by adding in "quadrature": 

( ) ( )2 2
1 2 ...y y yδ = δ + δ +  

Sometimes, however, the 1st-order error is smaller than higher-order terms. A Taylor's expansion in each 
variable gives 

1

1
!

n
n

i inn
i

d fy x
n dx

∞

=

 δ = ⋅δ 
 

∑  

If the 1st order term is small, the 2nd order term may dominate: 
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Error propagation rules can be used to determine the proper number of SFs with which to measure the 
result of a calculation. 

Calculation results may require round off to convey the appropriate number of SFs. This does not mean 
that values fed into calculations should be rounded-off, nor that the full precision of the calculation should 
not be recorded, only that expression of the final calculation results may require round off to the 
appropriate number of SFs.  

Multiplication & Division 
The number of SFs in a result is equal to the number of SFs in the factor, quotient, or divisor with the 
smallest number of SFs  

Example: Compute a velocity from measured distance and time: 



72.6 cmd =  (3 SFs), 8.2 st =  (2 SFs) 

( )72.6 cm 8.8537... cm s 8.9 cm s
8.2 s

dv
t

= = = =  (2 SFs) 

Addition & Subtraction  
The number of SFs in the addends, minuend, or subtrahend do not directly affect the number of SFs in the 
results. Rather, the LSF of of the results should be in the same position as the LSF of the term(s) having 
its LSF furthest to the left. 

Example: Compute a total length from two segments measured with different methods: 

1 209.0 nmL = , 2 1.822 nmL =  (3 SFs) 

( )1 2 209.0 nm 1.822 nm 210.822 nm 210.8 nmL L L= + = + = =  (10-1 LSF) 

Exponents 
For a base raised to an exponent (without error), the number of SFs decreases slowly as the absolute value 
of the exponent is increased above "1" (when the base and result are equal and have the same number of 
SFs), decreasing by approximately one for an exponent of "10". For fractional exponents, the number of 
SFs actually increases slightly. The result of raising a base to an exponent of "0.1" actually adds 
approximately one SF, compared to the base value. The reciprocal of a number has the same number of 
SFs as the original. 

Example: Compute the area of a circle from a measured diameter: 

1.506 mD = µ  (3 SFs) 

( ) ( )22 2 23.14159... 1.506 m 1.78013... m 1.780 m
4 4

A Dπ
= ⋅ = ⋅ µ = µ = µ  (3 SFs) 

Example: Compute the volume of a 10-D hypercube from a measured edge length: 

9.306 mL =  (4 SFs) 

( )10 9 10 9 104.8711... 10  m 4.87 10  mhV L= = × = ×  (3 SFs) 

Trigonometric functions 
These have somewhat different rules. For small angles, the result of the sine operation has the same SFs 
as the operand. But, the result of cosine for small angles generally has more SFs than the the operand. 
Also note that angles must be expressed in radians for correct error propagation. 

Example: Compute the sine of a small angle: 

0.40θ = °  (2 SFs) 

( )sin 0.00698126... 0.0070y = θ = =  (2 SFs) 

Example: Compute the cosine of the same small angle: 

0.40θ = °  (2 SFs) 



We may consider this to imply 0.400 0.005θ = ° ± ° . Computationally 

( )( )cos 0.99997502...y y+ δ = θ + δθ =  

( )( )cos 0.99997624...y y− δ = θ − δθ =  

( ) ( )[ ] ( )cos cos 2 0.000000613...yδ = θ + δθ − θ − δθ =  

Note that angles must be converted to radians for correct error propagation. The uncertainty is in the sixth 
digit after the decimal place 

( )cos 0.99997563... 0.999976y = θ = =  (6 SFs) 

In this case, the 1st order contribution is smaller than the 2nd order contribution. Expanding to 2nd order 
gives the same result as our computational estimation: 

( )21sin cos 0.000000613...
2

yδ = − θ ⋅δθ − ⋅ θ ⋅ δθ =  

Example: The inverse cosine only requires a 1st order estimation, but the math is trickier: 

0.999976y =  (6 SFs) 

( )1cos 0.3969576...y−θ = =  (6 SFs) 

( )
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The uncertainty is in the 3rd digit after the decimal place, so 

0.40θ = °  (2 SFs) 

Of course, we could also have 0.40θ = − ° , but that is another discussion. 


