Conical dark-field imaging

Direct beam is precessed around the optic axis
An entire diffraction ring can contribute
Centered dark-field conditions

Useful for nanoparticles, and polycrystalline or amorphous materials

Conical dark-field imaging of nanoparticles

Static Dark Field

Conical Dark Field

Partially crystallized material

Bright Field

Conical Dark Field

a-Si:H

Ewald sphere

Construction used to examine diffraction geometry
Radius $=1 / \lambda$
"Excitation Point" at the center
Reciprocal-space origin 0 always on the sphere surface

Incident wave vector points from M to 0 .
Diffracted wave vectors terminate on surface
Proximity of reciprocal-lattice point to sphere indicates deviation from Bragg condition

Higher-order Laue zones

Intercepted by Ewald sphere at high angle
More pronounced at lower energy (greater curvature)
Reveal lattice constant parallel to beam

Tilting the beam excites a circular section of the ZOLZ
$\mathrm{Si}<111>$

Excitation error (deviation parameter)

Vector pointing from g to Ewald sphere

Direction not uniquely defined, e.g.:

1) perpendicular to \mathbf{g}
2) parallel to \mathbf{k}
3) normal to foil surface
4) shortest distance to sphere

Bragg Condition: $\left|\mathbf{s}_{\mathrm{g}}\right|=0$
Unchanged if sample (or beam) rotated about \mathbf{g}

$$
k=|\mathbf{k}|=\left|\mathbf{k}+\mathbf{g}+\mathbf{s}_{\mathbf{g}}\right|
$$

Evaluating excitation error

Tilted beam w.r.t. foil normal

$$
\mathbf{k}=k \cdot(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{z}})
$$

$$
\text { Let's say: } \quad \mathbf{g}=g \hat{\mathbf{x}} \quad \mathbf{s}_{\mathbf{g}}=s_{\mathbf{g}} \hat{\mathbf{z}}
$$

By convention, $s_{\mathbf{g}}<0$ if g is outside the sphere.

$$
\begin{gathered}
k=\left|\mathbf{k}_{\mathbf{g}}\right|=\left|\mathbf{k}+\mathbf{g}+\mathbf{s}_{\mathbf{g}}\right| \\
\not^{\not \swarrow}=\not \not^{\not ㇒}+2 \mathbf{k} \cdot\left(\mathbf{g}+\mathbf{s}_{\mathbf{g}}\right)+\left(\mathbf{g}+\mathbf{s}_{\mathbf{g}}\right)^{2}
\end{gathered}
$$

$$
s_{g}=-k \cdot \cos \phi\left[\underset{\text { pick }(-)}{1 \pm} \sqrt{1+2\left(\frac{g}{k}\right) \frac{\tan \phi}{\cos \phi}-\left(\frac{g}{k \cos \phi}\right)^{2}}\right]
$$

$$
g \ll k \quad \Rightarrow \quad s_{g} \approx g \cdot \tan \phi-\frac{g^{2}}{2 k \cos \phi}
$$

Sphere volume and ZOLZ intersection

Sphere radius: $k=\frac{1}{\lambda}$
Sphere volume: $\quad \Omega=\frac{4}{3} \pi k^{3}$

