13. Diffraction from Crystals

Problems

13.1. Pure Cr has the bcc structure, with a lattice constant of a = 0.291 nm.

The electron-scattering amplitude (form factor) at energy E and scattering parameter s = g/2 is approximately

$$f(s) = \left(1 + \frac{E}{m_0 c^2}\right) \cdot A \cdot e^{-B \cdot s}$$

The parameters for this element are A=0.675 nm, B=0.341 nm.

The Fourier components of the structure function are $U_{hkl} = F_{hkl}/(\pi v)$, where v is the unit-cell volume. The extinction distance is $\xi_{hkl} = 1/(\lambda U_{hkl})$.

Create a table as shown below containing values at E = 200 KeV for each reflection listed in the first column:

hkℓ	i) g_{hkl} (nm ⁻¹)	ii) $f(s)$ (nm)	iii) $ U_{hkl} $ (nm ⁻²)	iv) $ \xi_{hkl} $ (nm)
a) 110				
b) 200				
c) 222				

Please show work and organize your answers.