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15. Indexing Diffraction Patterns 

Allowed reflections 
Here is a summary of what we found for cubic systems: For sc, we can have any integer set of Miller 
indices hk . For bcc, the only allowed reflections have h k    even; the rest are absent. For fcc, we 
must hk  either all even or all odd. It seems like the loss of some reflections should cause an increase 
somewhere else. 

h   k      2 2 2h k    sc bcc fcc
1 0 0 1 √
1 1 0 2 √ √
1 1 1 3 √ √
2 0 0 4 √ √ √
2 1 0 5 √
2 1 1 6 √ √
2 2 0 8 √ √ √
2 2 1 9 √
2 2 2 12 √ √ √
3 0 0 9 √
3 1 0 10 √ √
3 1 1 11 √ √
3 2 0 13 √
3 2 1 14 √ √
3 2 2 17 √
3 3 0 18 √ √
3 3 1 19 √ √
3 3 2 22 √ √
3 3 3 27 √ √
4 0 0 16 √ √ √
4 1 0 17 √
4 1 1 18 √ √
4 2 0 20 √ √ √
4 2 1 21 √
4 2 2 24 √ √ √
4 3 0 25 √
4 3 1 26 √ √
4 3 2 29 √
4 3 3 34 √ √

 
For one thing, notice that when some reflections are absent, the structure factors of the rest are larger. For 
bcc, half of the possible hk  values correspond to absent reflections, but the hkF   for the rest are twice as 

big (compared to sc). Likewise, for fcc, only one-fourth of all possible sets of hk  values are all even or 
all odd, but the hkF   are four times bigger. 

Another way to compare is in terms of nearest-neighbor distances. For sc, atoms are only on the corners: 

n-nd a  
For bcc, it’s half of the body-diagonal distance, so 

n-n 3 2 0.87d a a   
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For fcc, it’s half of the face-diagonal distance, so 

n-n 2 0.71d a a   

For sc, the atomic concentration is 

3 3
n-n1 1a d     

For bcc, it’s: 

3 3 3
n-n n-n2 3 3 8 0.65a d d     

And for fcc, it’s: 

3 3 3
n-n n-n4 2 1.41a d d     

If spherical atoms are packed in these arrangements so that they are just touching, the highest density 
(closest-packed) arrangement is fcc. 

The zone axis 
Take an arbitrary direct lattice vector: 

1 2 3uvw u v w  r a a a  
An an RLV: 

1 2 3hk h k  g b b b   

The RLV is perpendicular to  uvw  if: 

0hk uvw hu kv w    g r   

The vector hk hk g g 0   points from the reciprocal-space origin to the reciprocal-lattice point hk . So 

hk  is in the ZOLZ for the zone axis  uvw . In other words, Laue zones are planes in the reciprocal 
lattice, which can be specified by the direct-lattice vector that they are perpendicular to.  

 

Take any two non-parallel RLVs, 1g  and 2g , perpendicular to  uvw  ( 1 0uvw g r  and 2 0uvw g r ). Now 

consider their difference vector: 

 2 1 0uvw  g g r  

So 2 1g g  is also perpendicular to  uvw . Furthermore, if the corresponding indices are 1 1 1h k    and 

2 2 2h k  , then      2 1 2 1 1 2 1 2 2 1 3h h k k      g g b b b  , so the reciprocal-lattice point 

2 1 2 1 2 1, ,h h k k     is also in the  uvw  ZOLZ. 
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Finding the zone axis 
Again consider two non-parallel RLVs, 1g  and 2g , perpendicular to  uvw . The cross-product 1 2g g   

must be parallel (or anti-parallel) to  uvw . By convention, the zone axis vector points out of the page, 
towards the viewer (opposite to the direction of the incident beam.) When we take the cross-product of 
two RLVs, we will encounter the cross-products of the reciprocal-lattice basis vectors. This generates 
weird combinations that involve all three direct-lattice basis vectors: 

      i j j k i j k j jV      a a a a a a a a a  

We end up with: 

1
2 3

V
 

a
b b , 2

3 1
V

 
a

b b , and 3
1 2

V
 

a
b b  

So we can write the cross-product of the RLVs fairly easily in terms of the direct-lattice basis vectors: 

1 2 3

1 2 1 1 1

2 2 2

1
h k

V
h k

 
a a a

g g 


 

If we only want to know the zone axis for a ZOLZ, we can take any two reflections that are not on a line 
containing 0, and evaluate: 

   1 2 1 2 1 2 1 2 1 2 1 2|| , ,uvw k k h h h k k h        

Determining orientation 
If we know the structure type, but not the lattice parameter, we can still figure out the orientation of a 
selected-area diffraction pattern (which consists almost entirely of ZOLZ reflections), index the ZOLZ 
reflections, and then deduce the lattice parameter. Say we know the structure for the pattern below is fcc: 

 

It helps to measure the angles between at least two rows of reflections. We usually know which spot is 0. 
(It must be there somewhere if it is a ZOLZ.) In this case, we see a horizontal row and a vertical row that 
are perpendicular to one another. Find the 2 d  values for the longest g  vectors on the pattern that can be 

measured reliably. Then back out the d values for the lowest-order reflection in that row. For example, 
call the lowest-order horizontal reflection 1 and the lowest-order vertical reflection 2. We measure 12 d  

and find 1 0.208 nmd  . Then we measure 24 d  and find 2 0.293 nmd  .  

We know it’s fcc, wo we take the ratio and square, knowing that, for cubic crystals, the squared ratio 
should be a rational fraction. So we try to assign Miller indices consistent with the fraction: 
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2 2 2 2
2 1 1 1

2 2 2
1 2 2 2

2
1.98

1

d h k

d h k

         



4

2


6

3


2 2 2

2 2 2

8 2 2 0

4 2 0 0

 
 

 
 

Now we can say that the horizontal reflection is a {220} and the vertical reflection is a {200}. We need to 
find particular Miller indices consistent with these that lie in the same ZOLZ. In this case, 1 2 0 g g , so 

we assign: 220  for reflection 1 and 002  for reflection 2. 

Now we can find the zone axis. No need to keep extra factors of 2: 

   [ ] 1 1 0 0,1 0 1 1,1 0 0 1 110uvw             

Our zone axis is then  110B  

I would prefer not to have the double negative in the indices. Let’s reconsider this choice: 

Revise and index 
Let’s make the change in indices 220 220 . Now the zone axis is found using: 

     1 1 0 0,0 0 1 1, 1 0 0 1 110uvw             
So  110B , which I like better. 

Let’s fill out some more indices, and try a few tricks. There is a spot halfway between 002 and 220 : 

      1
002 220 111

2
   

Another spot is displaced from this new spot,  111 , by the vector connecting 0 to (002): 

        111 002 000 113    
And so on and so forth, until we are satisfied. What is the spot opposite to  220 ? 

        000 220 000 220    
We don’t always have to write (000), but it sometimes helps to keep track of what we are doing, 
especially when we get to indexing HOLZs! 

 

We can figure out the lattice parameter now. For example, we know 2 002 2d d a  . So 

0022 0.586 nma d   
Ah, yes. This is InP. 
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Powder pattern (I): CdSe 
Powder patterns show rings instead of spots, so we can’t rely as much on symmetry, but the 
measurements can be simpler. Take a ring pattern from a powder: 

 

List the rings, measure 2 d  for each, then find the d spacings. (It’s just usually a good idea.)  

ring 2 d  (1/nm) d   (nm)

1 5.677 0.352

2 9.251 0.216

3 10.858 0.1842

If we think it is cubic, we may want to measure the lattice parameter. We need to know some indices first.  
The squared ratios should be rational fractions: 

2 2 2 2
2

2 2 2
1

8 2 2 0
2.66

3 1 1 1

d

d

         
, 

2 2 2 2
3

2 2 2
1

11 3 1 1
3.66

3 1 1 1

d

d

         
 

So it looks like the indices are 1: 111, 2: 220, and 3: 311. This is consistent with fcc. For cubic, we 

know 
2 2 21 h k

d a

 



  

We can plot 21 d  vs. 2 2 2h k    and perform a least-squares fit. The lattice parameter should be the 

square root of the inverse of the slope. 

Powder pattern (II): Gd2Ti2O7 
Here is another example, also with an fcc lattice. The structure is a bit more complicated, and the 
crystallites are bigger, so the pattern is spotty. It can be useful to take a rotational average around the 

center of the pattern. This time, I just fit 1 d  as a function of  1/22 2 2h k   . 
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Structure factor and intensity 
We saw that centered cubic lattices have missing reflections (systematic absences). How can adding extra 
atoms reduce the intensities of some diffraction peaks? 

 

Say we set up the Bragg condition for some set of planes. The path length difference between two 
adjacent planes is exactly one wavelength  , giving constructive interference and a strong diffraction 
peak or spot. If this unit cell has only one atom, with form factor f , we might say the structure factor for 

this reflection is 

F fg  

Now we insert an extra, identical plane (though, in principle, it could be shifted laterally to any position 
parallel to the plane), between every pair of adjacent planes of the original structure. At the same crystal 
orientation, waves scattered from the the inserted planes have a path length differences of 2 . So the 

interference is destructive and we observe no peak. This is revealed in the structure factor: 

 1 e 0iF f    g  


