Scattering/Wave Terminology

elastic/inelastic (particle properties, collisions):
elastic - kinetic energy conserved
inelastic - some change (loss) of kinetic energy
coherent/incoherent (wave properties): coherent - constant phase relationship incoherent - no distinct phase relationship
scattering angle (change of direction):
forward - less than 90°
back - greater than 90°

Coherent Scattering

-scattering changes electron phase by a constant amount (possibly zero)
-scattering is elastic: no change in electron wavelength
$E \rightarrow p \rightarrow \lambda$

Coherent vs. Incoherent Solids

Long-range order
No long-range order
May have short-range order

Scattering Cross-Section

n : \# of scatterers/volume Thin Slab:
N : \# of scatterers
$N=n \cdot$ area $\cdot d z$
σ_{0} : cross-section (area) of one scatterer
$\left[\sigma_{0}\right]=$ barns; $1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}$
$\frac{N \cdot \sigma_{0}}{\text { area }}:$ fraction of incident beam scattered
\Rightarrow Intensity change through a very thin slice

$$
d I=-n \cdot \sigma_{0} \cdot d z \cdot I
$$

Mean Free Path

$$
\begin{aligned}
& \frac{d I}{I}=-\mu \cdot d z \\
& n=\frac{N_{\mathrm{A}} \cdot \rho}{A} \\
& \mu=n \cdot \sigma_{0}=\frac{N_{A} \cdot \rho \cdot \sigma_{0}}{A} \\
& \text { //Attenuation coefficient (length }{ }^{-1} \text {) } \\
& N_{A}=6.022 \times 10^{23} / \mathrm{mole}: \text { Avogadro's \# } \\
& \text { A: molar atomic mass (} \mathrm{g} / \mathrm{mole} \text {) } \\
& \rho \text { : mass density (} \mathrm{g} / \text { volume) } \\
& \rho \cdot T \text { : mass-thickness } \\
& \int_{I^{\prime}=I_{0}}^{I} \frac{d I^{\prime}}{I^{\prime}}=-\mu \cdot \int_{z=0}^{T} d z \\
& I(T)=I_{0} \cdot \mathrm{e}^{-\mu \cdot T} \\
& \text { //Correct expression for intensity } \\
& \Lambda=\frac{1}{\mu} \\
& \text { //Fractional intensity change through thin slice } \\
& \text { //Assume a single element } \\
& \text { //Attenuation coefficient (length }{ }^{-1} \text {) } \\
& \text { //Integrate over thickness } \\
& \text { //Correct expression for intensity } \\
& \text { //Mean free path (length) }
\end{aligned}
$$

Interpreting Cross-Section

Same total cross-section

Units: Solid Angle

 surface area of sphere $=4 \pi r^{2}$$\Omega$: solid angle

$$
\Omega=\frac{\Delta A}{r^{2}}
$$

in steradians: sr

$$
0 \leq \Omega \leq 4 \pi \mathrm{sr}
$$

Also, $\quad 1$ sq. deg. $=\left(\frac{\pi}{180}\right)^{2}$ sr \quad sr preferred!

Scattering from Single Slit (Narrow)

Huygens' Principle: Every point on a wave front acts as a source of secondary, spherical "wavelets"

Plane Wave

wave propagation

Spherical wavefronts

Narrow slit selects one wavelet
\rightarrow spherical wave

Two-Slit Interference Pattern (Narrow Slits)

Single-Slit Diffraction

Bright, central maximum

$$
I(\theta)=I_{0} \cdot \operatorname{sinc}^{2}\left(\frac{\pi \cdot w \cdot \sin \theta}{\lambda}\right)
$$

$$
\operatorname{sinc}(x) \equiv \frac{\sin x}{x}
$$

Small angles:

$$
\lambda \ll w \Rightarrow \sin \theta \approx \theta
$$

Two-Slit Superposition

Assume incoherent sources
β : semi-angle of collection ϕ : semi-angle between sources

$$
\begin{gathered}
\text { Small angles: } \beta \approx \frac{w}{2 L} \quad \phi \approx \frac{\delta}{2 L} \\
I(\theta)=I_{0} \cdot \operatorname{sinc}^{2}\left[\frac{\pi \cdot w \cdot(\theta-\phi)}{\lambda}\right]+I_{0} \cdot \operatorname{sinc}^{2}\left[\frac{\pi \cdot w \cdot(\theta+\phi)}{\lambda}\right]
\end{gathered}
$$

Rayleigh Criterion

Rayleigh criterion:
Just resolvable if central maximum from slit 1 falls outside first minimum from slit 2

Resolution: Rayleigh Criterion for Slits

$$
\begin{array}{ll}
\operatorname{sinc}^{2}\left[\frac{\pi w\left(\theta_{0}-\phi_{\min }\right)}{\lambda}\right]=1 & \text { (source 1 max) } \\
\& & \operatorname{sinc}(0)=1 \\
\operatorname{sinc}^{2}\left[\frac{\pi w\left(\theta_{0}+\phi_{\min }\right)}{\lambda}\right]=0 & \text { (source } 2 \mathrm{~min})
\end{array} \quad \operatorname{sinc}(\pi)=0 .
$$

Note: circular apertures $\Rightarrow \delta_{\min }=(0.61) \frac{\lambda}{\beta}$

Modified Resolution Threshold for Slits

Just resolvable if central intensity is a local minimum

Two-Slit Interference with Diffraction

Beam/Imaging Angles beam

Beam convergence used to create small probe

Restricted collection angle to:

1) improve contrast
2) improve resolution

Some scattering outside of collection angle

Electron Diffraction Patterns

