Vacuum terminology

LV: Low/Rough Vacuum HV: High Vacuum UHV: Ultra-High Vacuum 1 Pa = 1 N/m² = 10^{-5} bar 1 atm = 760 torr = 1.01×10^{5} Pa = 1.01 bar 1 torr = 133 Pa = 1 mm · Hg

Ranges for different pumps

Multiple pumps in a system

Rotary, mechanical, roughing pump

- •Vanes immersed in oil to
- -cool
- -lubricate
- -seal
- •Oil backstreaming a problem
- •Ballast used to release vaporize condensed contaminants

Oil diffusion pump

- •Oil vapor flows upward and projects out of jets at high speeds.
- •Vapor traps gases and condenses on cooled sides of pump
- •Gases are released when oil returns to heater; extracted by roughing pump
- •Do not provide a very "clean" vacuum.

Turbomolecular pump

•Rapidly spinning blades eject gas molcules

•Very clean vacuum

•Potential damage if rapidly vented

Ion getter pump

Vacuum gauges

Pirani Gauge

Permanent Magnet Cold Cathode Discharge Cathode (-2000 V)

•Filament resistance depends on pressure and type of gas

•Low-vacuum gauge

- Ionization current depends on pressure
- •High-vacuum gauge

TEM Specimen Holders

 Low-background, double-tilt
 Be clip

 Finite Single-tilt/high-tilt
 Be clip

Standard double-tilt

Heating

