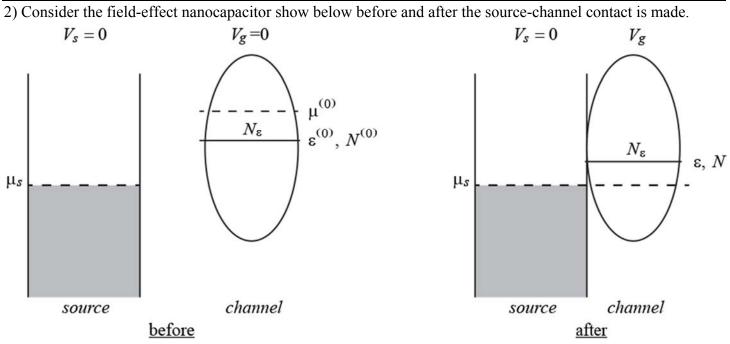
NANO 705 Homework 1 Due: F-Jan. 27, 10:00 AM

Show all work. Use additional sheets. Use kT = 0.025 eV.

1) A voltage difference $\Delta V = 0.50$ V applied across a straight, conducting rod produces a current I = 9.0 A. a) Find the conductance of the rod.

b) The rod has cross-sectional area $a = 2.4 \times 10^{-4} \text{ m}^2$ and length $\ell = 0.64 \text{ m}$. Find:


i) The average current density J (in A/m²);

- ii) The average electric field ϵ (in V/m);
- iii) The conductivity σ [in $(\Omega \cdot m)^{-1}$].

c) The conduction-electron density is $n = 1.0 \times 10^{28} \text{ m}^{-3}$. The electron mass is $m = 9.1 \times 10^{-31} \text{ kg}$. Find:

i) The drift velocity v (in m/s);

ii) The relaxation time τ between collisions (in s).

The channel has a single (unbroadened) level with energy ε containing $N_{\varepsilon} = 10$ states. The channel is initially neutral with $\varepsilon^{(0)} - \mu^{(0)} = -0.20 \text{ eV}$, where $\mu^{(0)} - \mu_s = 0.50 \text{ eV}$. The gate is at potential V_g with respect to the source, which is grounded. The electrostatic potential in the channel is $U = (N - N^{(0)}) \cdot U_p - U_L$ The single-electron charging energy is $U_p = 0.128 \text{ eV}$. The change in channel potential due to the applied voltage is $U_L = (0.90) \cdot qV_g$.

The rate of carrier transport is $r = 5.0 \times 10^{12} \text{ s}^{-1}$

a) Find the channel-to-source current formed *immediately* after the contact is formed, assuming $V_g = 0$.

b) The following gate voltages are applied:

i) $V_g = 0.50 \text{ V}$; ii) $V_g = 0$; iii) $V_g = -0.50 \text{ V}$

For each gate voltage, find:

A) the average number N of filled states in the channel;

B) the potential U (in eV) in the channel;

C) the position of the level $\varepsilon - \mu$ (where $\mu = \mu_s$).