Homework 4

Due: M-3/20, 10:00 AM

Show all work and discuss results.

1) Using a particular representation, an arbitrary state can be written as $|\psi\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle+c_{3}\left|\phi_{3}\right\rangle$, where the basis vectors are orthonormal: $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}$. In matrix form, the state can be written:
$\{\psi\}=\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$
The hamiltonian matrix in this basis appears as
$[H]=\left(\begin{array}{ccc}3 a & 0 & 0 \\ 0 & 3 a & -a \\ 0 & -a & 3 a\end{array}\right)$
where a is a constant.
a) Find the three energy eignvalues $E_{i}(i=1,2,3)$.
b) Find the eigenvector $\left|\psi_{i}\right\rangle(i=1,2,3)$ for each eigenvalue.
c) Write the hamiltonian matrix $\left[H^{\prime}\right]$ in the diagonal representation.
d) Given a chemical potential μ at some temperature T, write the equilibrium density matrix [ρ^{\prime}] in the diagonal representation. [Abbreviate the Fermi functions $f_{i}=f_{0}\left(E_{i}-\mu\right)(i=1,2,3)$.]
e) Write the transformation matrix $[V]$, such that $[H]=[V] \cdot\left[H^{\prime}\right] \cdot[V]^{\dagger}$.
f) Find the equilibrium density matrix $[\rho]$ in the original representation.
g) Write an expression for the equilibrium carrier concentration $n(x)$ in terms of the basis wave functions $\phi_{i}(x)$ ($i=1,2,3$).
2) A 2-D crystal with a one-atom basis on a rectangular lattice is shown below. The matrix matrix elements coupling neighboring atoms are indicated by the letters s and t.

Find a general expression for the dispersion relation $E\left(k_{x}, k_{y}\right)$.

