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Graphene 

Graphene consists of two-dimensional sheets of carbon (C) atoms in an hexagonal lattice. The 2-D unit 
cell contains two C atoms, which are usually selected to be nearest neighbors, separated by a distance of 

0 0.142 nma  . Though possibly not the best choice, one could define lattice vectors 

1 ˆ ˆa b a x y  and 2 ˆ ˆa b a x y  

where 03 2a a  and 03 2b a . 

 

Consider the electronic structure of an isolated C atom. Just as for a He atom, its core electrons are in 1s 
orbitals, with four additional electrons in its valence shell. Its lowest-energy configuration has two 
electrons in the 2s orbital and two in 2p orbitals. The 2s orbital is spherically symmetric, with one radial 
node, whereas the 2p orbitals have a node at the origin. 

 

Molecular orbitals can form by hybridization of any combination of these basis states. In this case, we can 
form 2sp2 bonding orbitals oriented parallel to the plane of the graphene sheet. For example, 2px and 2py 
can be combined with amplitudes specified by an angle  , i.e. 

2 x2p 2p2p , cos sin
y       

These can be mixed with the 2s orbital as 

2 22s2p , 2p ,

1 2

33
       

We could write the hybridized state as 
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 1 2
2s cos 2p sin 2p

33
x y            

We can interpret this linear combination as shown below: 

 

Notice that the state is normalized for any angle  : 

 2 21 2
cos sin 1

3 3
          

Let's pick 0   . Then 

1 2
0 2s 2p

33
x      

We will need two additional orbitals to form covalent bonds among nearest-neighbor C atoms: These 
states should be orthogonal, so 

1 2
0 cos 0

3 3
        

Then 
1

cos
2

    and 120    . The resulting 22sp  orbitals allow each C atom to share one of its 

valence electrons with each of its three neighboring C atoms on the graphene hexagonal lattice. 

 

Three of the four valence electrons for each C atom are involved in bonding within the graphene sheet. 
The fourth valence electron can remain in orbitals derived from z2p  that contribute to conductivity. 
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Let's write the hamiltonian for a single-electron in graphene as 

 
2ˆˆ

2

p
H U

m
  r   

It is reasonable to assume thate the potential energy involves a term for each C atom in the unit cell, 
whose positions are specified by the vectors A d 0  and B 0 ˆad x : 

        C A C Bn nn
U U U     r r r d r r d  

where the sum is over all units cells in the graphene, located at 1 2n n nu v r a a , with   2,n nu v  . We 

will choose as basis functions the z2p  orbitals centered on each of the C atoms within the unit cell:

  C An  r r d  and   C Bn  r r d . The state associated with each unit cell is  

  A

B

n

n

     
 

and the wave function for the whole crystal is 

 

 
 

1

1

 
   
 
 
 


 

We want to solve the time-indpendent schrodinger equation: 

    H E     

We use the ansatz 

    0 e ni
n

    k rk  

We just need 

  A
0

B

     
 

The ansatz turns this into 

    0 e ni
nn

h H   k rk  

where  0nH  is the matrix coupling the basis states in unit cell 0 to those in unit cell n . 
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 0

ˆ ˆ0A | | A 0A | | B

ˆ ˆ0B | | A 0B | | B
n

H n H n
H

H n H n

 
  
 

 

We might as well simplify by relabeling  A , An nn u v  and  B , Bn nn u v . Also 

    0 ,n nn u vH H . We will need to know the self-energy term 

       0
ˆ ˆ0,0 A | | 0,0 A 0,0 B| | 0,0 BE H H   

The next important term involves couping among nearest neighbors. 

   

   
   
   

   

ˆ0,0 A | | 0,0 B

ˆ0,0 A | | 1,0 B

ˆ0,0 A | | 0,1 B

ˆ0,0 B | | 1,0 A

ˆ0,0 B | | 0,1 A

t H

H

H

H

H

 









 

Various studies have found a value of approximately 2.8 eVt   We can get a good sense of the 
electronic structure of graphene if we assume all higher-order terms (second nearest neighbors, and 
beyond) are negligible. We have 

   0
0,0

0

E t
H

t E

    
 

and 

   1,0 0,1

0

0 0

t
H H

            
,      1,0 0,1

0 0

0
H H

t
     

 

Combining 

           

   

1 2

1 2

0,0 1,0 0,1

1,0 0,1

e e

e e

i i

i i

h H H H

H H

 

   

    

         

k a k a

k a k a

k
 

Defining    1 2
0 1 e ei ih t        k a k ak , this gives 

  
 

 
0 0

*
0 0

E h
h

h E
   
 

k
k

k
 

Now we solve the eigenvalue problem 

        0 0h E    k k  

Use        det 0h E I  k k , or 

   
   

0 0

*
0 0

det 0
E E h

h E E

    

k k

k k
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The two eigenvalues for each wavevector k  describe the two electronic bands 

    1 2
0 0 0 1 e ei iE E h E t    

       k a k ak k  

One might be inclined to write ˆ ˆx yk k k x y . Then 

        0 , 1 e e 1 2e cosx y x yi ak bk i ak bk iak
x y yh k k t t bk                 

The magnitude is 

       2
0 , 1 4cos cos 4cosx y x y yh k k t k a k b k b     

It is often more useful to write 1 2u v k b b , where ,2i j i j  a b . We can find these vectors by 

inverting the 2-D direct lattice vectors. In matrix form: 

   1 2A
a a

b b
     

a a   

The inverse is 

  1 1 11
A

1 12

a b

a b
     

 

The reciprocal lattice basis vectors are given by 

      1
1 2B 2 A

T a a

b b
         

b b  

So    1 ˆ ˆa b   b x y  and    2 ˆ ˆa b   b x y . Now 1 2 u  k a  and 2 2 v  k a , which gives 

   2 2
0 , 1 e eiu ivh u v t          

and the magnitude is 

        0 , 3 2cos 2 2cos 2 2cos 2h u v t u v u v          

The separation between the two bands at some point in reciprocal space is  02 ,h u v . The maximum 

band separation of 6t  occurs at reciprocal-lattice points, where both u  and v  are integers. The band 
separation is zero at the Fermi points, with coordinates  0 0,u v . These often have a dominant effect on 

the conducting properties of graphene. We must have 0 02 2e e 1iu iv      , so    0 0cos 2 cos 2 1u v      

and    0 0sin 2 sin 2 0u v    . Then 0 1 3u p   ( p ) and 0 0v u p    ( p ), so 

 0 1 3 1 3v p p q       ( q ). The Fermi points coordinates are then  1 3, 1 3p q  . The first 

Brillouin-zone boundary is a regular hexagon with Fermi points at each of the six corners. It is useful at 
this point to form a contour plot of  0 ,h u v t . 
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Consider the region near any Fermi point, with coordinates  0 0,u u v v    . We have 

      
    

     

0 02 2
0

2 1 3 2 2 1 3 2

2 2 2 2
0

, 1 e e

1 e e e e

1 3
, 1 e e e e

2 2

i u u i v v

i p i u i q i v

i u i v i u i v

h u v t

t

h u v t i

     

          

           

      

      

 
          

 





 

Now let's assume  ,u v   is small. To first order 

      0 , 3h u v t v u i u v              

Notice that  xk u v a       and  yk u v b      . So 

     0
0

3
, 3

2
x y y x y x

ta
h k k t k b i k a k i k                  

The magnitude is 

  0 2 2
0

3
,

2
x y y x

ta
h k k k k        

There is rotational symmetry in the vicinty of the Fermi point. Writing  the radius in reciprocal space as
2 2

r y xk k k     , we have 
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  0
0

3

2
r r

ta
h k k    

So the bands near these points vary as 

  0
0

3

2
r r

ta
E k E k      

Graphene: DOS 
We saw that the number of states in a sheet of area S  having wavevector shorter than rk  increases with 

wave vector as 

1

2
rdN k

S dk



 

For graphene, at a short distance rk  from a Fermi point (setting 0 0E  ) 

 r rE k ta k      

The DOS is  D E dN dE , so 

 
2 22

D E E

S t a


  

as sketched below. 

 

Carbon nanotubes 
A graphene sheet can be rolled into a carbon nanotube (CNT) along some roll-up vector 1 2m n c a a , 

where   2,m n  . We can write 

   ˆ ˆm n a m n b   c x y  

The circumference of the nanotube is then 

   2 22 2 2 2
03c m n a m n b a m n mn        

Assuming a uniform, cylindrical shape, the diameter is d c  . 
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Consider the wavefunction we used for an infinite graphene sheet. It must be single-valued, so its value in 
the unit cell located at n r c  must equal that at 0  (since they are the same unit cell.) This gives 

      , 0 0ei
m n

     k ck  

We then have 2  k c  , where the index    specifies a subband. Recalling that 1 2u v k b b , we 

can see that all wavevectors on this subband must satisfy mu nv   , which specifies a line through the 
reciprocal lattice. The possible subbands, and thus the electrical properties, will depend on  ,m n . It is 

useful to establish a coordinate system aligned with the CNT axis: || ||ˆ ˆk k  k e e . Then unit vector along 

the roll-up vector is 

   ˆ ˆ
ˆ

m n a m n b
c

d


  
 


x y

e c  

We can specify a Fermi point as 0 0 ||0 ||ˆ ˆk k  k e e . 

   0 0
0 0 ˆ x ym n k a m n k b

k
d

 
  

  


k e  

Noting that  xk u v a    and  yk u v b    

     0
1 2

3
k m n p q m n p q

d


              
 

In the vicinity of a Fermi point at, we can write 0k k k     . From the local rotational symmetry, we 

have 

  0 2 2
0 || ||

3
,

2

ta
h k k k k         

For the CNT, k d  k c , so for a particular subband 2k d   , whereas ||k  is unrestricted. Now 

      2
2

3
m n p q m n p q

k
d



          
  


 



9 
NANO 705-Notes 

The minimum band separation for a particular subband will always occur where || 0k  . Then 

     0
0

3 2
2

2 3

ta
h m n p q m n p q

d
            
 

  

Rearranging 

   0
0 3

ta
h mq np m n

d
       

We can thus compute the bandgap  for a particular CNT with roll-up indices  ,m n  as g 02E h , 

evaluated using the combination of integers  , ,p q  that minimize 0h . Note that   can be any integer, 

so s mq np    can, likewise, be any integer. Therefore, we are looking for the minimum of 

 3s m n  . Clearly      3 3s m n s m n      , so subbands arising from s  give the same gE , 

(though they may correspond to different subands  .) Note that, for any  ,m n , of the three numbers 

1m n  , m n , and 1m n  , exactly one will be divisible by 3, so either m n  is equal to 3 times 
some integer s , or it is one different from 3s . Combining the factors 2.8 eVt   and 0 0.142 nma  , we 
conclude that, for any CNT 

g

0.80 eV nm
, 3

0, 3

m n s
E d

m n s

   
  

 

The first type, which has a nan-zero bandgap, can be considered semiconducting. The second type, with 
no bandgap, is metallic.  

Whereas, the graphene sheet has sixfold rotational symmetry about a point in the center of each open 
hexagon, each atom is at a site of threefold symmetry. This leaves the structure unchanged under a 120° 
rotation. We can write a pair of roll-up indices  ,m n  as a vector  X . Given the basis matrix  A , the 

roll-up vector is    A X c . A rotation about the origin is affected by a matrix  R , such that 

     R A X    c c .Then 

         1X A R A X      

To rotate by ±120°, we use 

 
1 3
2 2

3 1
2 2

R
 

     


 

For clarity, write    , ,m n i j . Then the the following three sets of roll-up vectors are equivalent: 

m i

n j
      
   

, 
0 1

1 1

m i j

n j i j
                          

, and 
1 1

1 0

m i i j

n j i

                   
       

 

Since the CNT is not physically changed by reversing the direction of c , flipping the overall sign on 
 ,m n  also has no tangible effect. 
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Consider a CNTs with m n . We can write the roll-up indices as  ,i i . The subband 0  will contain 

the Fermi points at  1 3, 1 3  , so the CNT will always be metallic. (To check this, notice that 

0 3 0m n i i      .) This is known as an armchair CNT. From the discussion above, this CNT is 
equivalent to those with indices  , 2i i  and  2 ,i i , which are also armchair CNTs, satisfying the 

conditions 2m n   and 2m n  , respectively. In summary, amchair CNTs have indices with m n , 
2m n  , or 2m n  . 

CNTs with indices  ,0i ,  0, i , and  ,i i  are equivalent, and are called zig-zag CNTs. We can say 

that zig-zag CNTs have either 0m  , 0n  , or m n  . In the last case, the rule becomes 2 3m s . 
Regardless of the orientation, one out of three possible zig-zag CNTs is metallic, whereas the other two 
are semiconducting. This may not correspond to the actual abundances of each during synthesis, however. 

 

If we focus on the Fermi point at  1 3, 1 3  (i.e., 0p q  ), the quantity determining bandgap becomes 

 3 m n  . This leaves the bandgap formula unchanged;, with 3  substituted for 3s . We can always 

find some index   for a subband that determines bandgap by passing closest to this Fermi point. If 
3m n   , then the CNT is metallic and   3m n  . Otherwise, we need to determined which of the 

two possibilities  1 3m n    returns an integer index. 
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CNT: DOS 
Consider a rectangular sheet of graphene, with dimensions c L , that could be rolled into a large CNT. 
The area is S L c Ld    . Then the DOS per unit length (of this carbon macrotube) is 

 
2 22

D E d
E

L t a
 


 

In the vicinity of  1 3, 1 3 , we have   2 3k m n d    , so 

2 2
2

||
2

3
r

m n
k k

d

          
   

  

For a particular subband  , this gives 

 
2 2

2
|| ||

2

3

m n
E k ta k

d


            
   

  
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The incremental difference in parallel wavevector is 

2 2
||

1
k E E

ta
      

where 

2

3

ta m n
E

d


     

The DOS for a single subband   can be found using 

 
 ||

||

1 1 d kdN dN

L dE L d k dE


  


   

Applying periodic boundary conditions along the CNT axis 

 ||

1 1dN

L d k


 
  

From the dispersion relation 

 ||

2 2

1d k E

dE ta E E


 

 

 

We get 

   
2 2

1D E E
E E

L ta E E
   
 






 

We can include contributions from all subbands, giving 

   
2 2

1D E E
E E

L ta E E
   
 

 


 

The resulting DOS is a very discontinuous DOS, with a spike each time E  exceeds an addition subband 
edge E .  

Consider the limit as the CNT becomes macroscopic. The subbands become very close together as d  
becomes larger. Notice that 2dE d ta d  , so  2d d ta dE   . Changing the sum to an integral gives 

   
2 2

2 2 2 2

1

1

2

E

E E

D E E
d E E

L ta E E

d E dE
d

t a E E







    
 

 
      



 













 

Define a right triangle, such that 2 2cos E E E     and sin E E   .  
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Then sinE E    and cosdE E d     , giving 

2 2

1 1

cosEE E


  

 

Our integral is simply 

2

2 2 2

E

E E

dE
d d

E E



 
    


 





  

Finally we have 

 
2 22

D E d E

L t a


  

which matches the result for the graphene sheet, as expected. The graphene DOS gives the overall slope 
for the CNT DOS, which shows spikes at each subband-edge energy. 

 


