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Density of States 

The hamiltonian for a electron in an isotropic electronic band of a material depends on the band-edge 
energy of CE  and an effective mass Cm  

2ˆˆ
2

C
C

p
H E

m
   

In any number of dimensions, the dispersion relation is 
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The electronic band is described as "parabolic". For a particular energy CE E , the wavenumber can be 

either of two values: 
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Assuming 0k  , the wavenumber changes with energy as 
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Often, it is useful to know the number of states per unit energy, called the density of states (or DOS), D . 
In any number of dimensions, we can use 
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where N  is the number of states having wavevector with length less than than k  k . This will depend 

on the number of macroscopic dimensions in which the electron is free.  

1-D case 
The eigenfunctions in any macroscopic dimensions are plane waves. So in 1-D 

  eikx
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where any real value of k  is allowed. It is useful to assume periodic boundary conditions within a box of 
size L, so that the wavefunctions in the macroscopic dimension x satisfy 

     eikL
k k kx L x x       

We then have e 1ikL  , which tells us that  2nk L n   , with n . We can choose to normalize these 

wave functions over the size of the box, i.e. 
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Apparently, the separation in reciprocal space between adjacent states is 1 2n nk k k L     , so we 

have one state per 2 L  in reciprocal space. 

 

In 1-D, the number of states for which nk k  is 
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The number of states per unit length with wavevector less than k is 
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Assuming 0k  , the number of states per unit length of wave vector is 
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So the DOS per unit length is 
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This can be simplified using the step function  ; 
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2-D case 
In a 2-D box with area x yS L L   , the wave functions are 
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The length squared of wave vector is 2 2 2
x yk k k  , so the number of states within a circle about the 

origin of radius k  is 
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The rate of increase of the number of states per unit area with increasing wavevector is 
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The DOS per unit area is 
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3-D case 
In a 3-D box with volume x y zV L L L    , we can write the wavefunction as 
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The number of states inside a sphere of radius k is  
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The rate of increase of the number of states per unit volume with increasing wavevector is 
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The DOS per unit volume is 
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DOS for real-world nanostructures 

Real nanostructures exist in a 3-D world, so we will have quantum confinement in some dimensions and 
no confinement in others. We can describe these as follows. 

Quantum well 
In the real, 3-D world, a quantum well has one nanoscale dimension and two bulk dimensions. Assuming 
particle-in-a-box confinement in the z-direction only, the wavenumbers in that direction will be limited to 
discrete values. The dispersion relation within this subband is 
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where zn  . We can apply the analysis of the 2-D case above to each subband. The DOS above the 

edge 2
C z zE n   of each subband is constant. For example 
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So the total DOS for all subbands is 
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Quantum wire 
A real quantum wire has two nanoscale dimensions and one bulk dimension. Assuming the cross-section 
of the wire is rectangular, the eigenvalue problem is separable in cartesian coordinates. We can have 
particle-in-a-box confinement in x and y directions, and 1-D dispersion in the z direction, so that the 
dispersion within a subband is 
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We have defined 2 2
,x yn n x x y yn n      and    2

,x yn n   . The previous 1-D analysis applies to each 

subband. So the total DOS per unit length of quantum wire is 
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Quantum dot 
A quantum dot has confinement in all three nanoscale dimensions, with zero bulk dimensions. We would 
find solutions of the form 
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, , , ,x y z x y zn n n C n n nE E    

where    3
, ,x y zn n n   . Since we have no macroscopic dimensions, there is no dispersion within these 

subbands, so that total DOS is 

    , ,, , x y z
x y z

C n n nn n n
D E E E      

Electron Concentration 

To specify the electron concentration, we need to know not only the DOS, but the probability that each 
state is occupied, as given by the fermi function. This can be approached from a microscopic perspective 
if we know all of the energy eigenstates. Assume some set of quantum numbers   specifies each 

eigenstate, which have wavefunctions   r  and energy eigenvalues  . Then 

     2
02n f 

      r r   

where the initial factor of 2 is for the possible spin states. We assume the energy eigenstates are formed 
from the electronic band described previously. If the region of interest is macroscopic in one or more 
dimensions, we can apply periodic boundary conditions and, the allowed energies form a continuous 
spectrum. But if the region is nanoscopic, we will impose infinite barriers at the boundaries, causing the 
spectrum to become discrete.  

3-D (bulk) material 
Since we have no nanoscale dimensions, we can apply periodic boundary conditions in all dimensions. 
Thus, there is no physical boundary, and the magnitude-squared of the wave function is constant  

  2 1

V
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We previously found the number of states per unit radius of wavevector, per unit volume, so the sum of 
states becomes an integral 
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Specifically 
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We can write this as 
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We define the function 
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We have used the "effective" conduction-band DOS 
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where, at 0.026 eVBk T  , 
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One can condense further using 
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Quantum well 
In this case, we will have only a z-dependence on the magnitude squared of the wave function 
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We cannot eliminate the sum in zn , but we can still replace the sums in x and y 
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Using 
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We can write this as 
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using the same definition of CN  as in the 3-D case. Now we can define 
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If we also define 

  2 3
2 2DD C

B

E
f E N

k T

      
 

 

we can further condense to 
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Quantum-wire 
In this case, we will have both x and y-dependence on the magnitude squared of the wave function 
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We change the z sum to an integral 
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Using 
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we can write this as 
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Finally, 
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, 1D ,,
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The functions  0f x   1D x ,  2D x , and  3D x  are plotted below. Whereas the fermi function is 

limited to the range 00 1f  , the functions we have defined have no upper limits. 

 

Quantum dot 
A quantum dot has confinement in all three nanoscale dimensions, with zero bulk dimensions. Assuming 
all faces of the box are rectangular, the eigenvalue problem is separable in cartesian coordinates, and we 

would find solutions  , ,x y zn n n r  for    3
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     2
, , 0 , ,, ,
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x y z x y z
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Non-degenerate cases 

The preceding analysis is sufficiently general that it would apply regardless of the relative position of the 
chemical potential with respect to the conduction-band edge. If the chemical potential lies close to the 
band edge or within the band, the electron concentration is called "degenerate". In semiconductors, we 
usually have the situation where the chemical potential is well below the conduction band edge, such that 

C BE k T . This case is called "non-degenerate". For the functions defined above, this corresponds to 

the limit where 
2

e e 1x y  , so 
2 2

1+ e e e ex y x y   , which allows simplification of the expressions we 
obtained. 

Bulk material 
In the 3D case, 
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The integral is easily found as follows: Say we want to know 
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The square of this is 
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We can switch to polar coordinates 

 
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Now we want to find 
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We can observe that 
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For  3D x , we have 1  , so  3D e xx   . In this limit 

 2 e C BE k T
Cn N      

Quantum well 
The expression for the quantum well is easily simplified. For example, we can repeat the integral in this 
limit 

 
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Now we can write the electron concentration as 
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Quantum wire 
In this case, we again have 

 
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