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Hydrogen molecular ion 

An appropriate basis 
Molecular hydrogen is held together by covalent bonds. In fact, two hydrogen nuclei can remain bonded 

by a single electron in the 2H   molecular ion. The electron is shared by both protons, which are repelled 
from each other.  

 

The electron wave function can be solved exactly using elliptical coordinates, which are quite 
cumbersome. We will show that a stable solution (with positive binding energy) is formed by a linear 
combination of the ground-state orbitals associated with each proton separately. Our goal is to establish 
the use of convenient basis states from which we can construct an approximate solution to a related 
problem of interest. 

Formulation 
The total energy relevant to the formation of the molecule includes the kinetic energy of the electron, the 
electrostatic potential energy between the electron and each proton, and the electrostatic repulsion 
between the protons. The hamiltonian is then 
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We use the H-atom ground-state orbitals as our basis functions. If the atom is centered at the origin, the 
wave function is 
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In the molecule, we have one orbital centered around each nucleus 
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The hamiltonian for each isolated atom is 
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Our basis consists of eigenfunctions of these separate hamiltonians 
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We will write the wave function for the molecule ion as 
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This can be written in the   basis as 
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Basis functions 
Let's look at the representation of a state in particular basis. We have 
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Identify the matrix elements in this basis:   ˆ| |m nmnH H    and   |m nmnS    . 

    
    

†

†

H
E

S

 


 
 

For a given  H  and  S , we can find the    satisfying        H E S      . In this case, the 

expectation value is also the eigenvalue of    1S H  , i.e., 

       1S H E        

These wavefunctions and their energies are not the eigenfunctions and eigenvalues of the actual 
hamiltonian, but provide a useful orthonormal set constructed from our selected basis functions. 

Normalization 
We can include a normalization constant in our wave function 
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If we want our wave function to be normalized, we need 
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Within an arbitrary phase constant 

    †Z S    

Solution 
For the problem at hand 

 
ˆ ˆ| | | |

ˆ ˆ| | | |

H H
H

H H

   

   

    
  

    
 

and 

 
| |

| |
S

   

   

          
 

We can write 
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Let's first write the elements of  S  as 
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The diagonal elements in  H are 
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and the off-diagonal elements are 
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We can abbreviate 

 
2

0
04

q
c E a R

R
   


 

   
2

0
04

q
d E s R b R

R
       

 

 s s R   

giving 

 
c d

H
d c
   
 

,  
1

1

s
S

s
   
 

 

Inverting gives 
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To solve the eigenvalue problem, we take 

      1det 0S H E I     

which becomes 
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The eigenvalues are 
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Notice  
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So our eigenvalues are 
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Wave functions 
To find the wave functions for each eigenvalue, write 
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The normalization constants are 
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The wave functions are then 
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Evaluation 
We will need to perform the integrals for  a R ,  b R , and  s R  to interpret these results. First 
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We can choose to orient R  along the z  axis. Then do the   integral. 
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We showed that 
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We can break the r  integral into the ranges r R  and r R   
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Let's define 02 a   and y r  . Finally 
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Next we find the "exchange" integral 
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We again choose to orient R  along the z axis and do the   integral. 
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The second integral gives 
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Again splitting the integral into two ranges 



7 
NANO 705-Notes 

   

 

0 0

0

2
2

2 0
0 0 0 0

2

0 0 0

e sinh e sinh

1 e
4

R r R a r a

r r R

R a

q r R
b R dr r dr r

R a a a

q R
b R

a a

  

 



                        
         

 
 

Lastly, we address the "overlap" integral 
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Let's do the   integral. 
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We can then break the r  integral into three terms: 
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where        1 2 2a bs R s R s R s R   . These give 
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The final result for the overlap integral is 
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Bound state 
Now we can investigate whether a bound state ( 0E E  ) exists for either the AE  or BE  solutions at some 
value of R  and use the variational principle to minimize the total energy. Plotting these quantities shows 
that only the symmetric ( BE ) solution has a minimum energy lower than that of an isolated, neutral H 
atom and distant proton. Using these basis functions, the optimal separation of the protons is 0.132 nm 
and the ground-state energy is -15.37 eV. That can be taken as an upper limit on the actual ground-state 
energy, which will always be lower than the expectation value found from an approximate solution. 

 

Now we can plot the wave functions A  and B , referred to as the anti-bonding and bonding orbitals, 

respectively, for the optimal nucleus separation 0R  (which is, in fact, applicable only to B .) 

 

We see that A  has a node at the midpoint between the nuclei, whereas B  does not. 
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Integrals 
Find 
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n

y
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where n  . It is easy to see that 
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What is 1I ? We can integrate by parts: u dv u v v du      , using u y  and e yv   . Then du dy  

and e ydv  . So 
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Now find 2I : Take 2u y  and e yv   . Then 2du y dy   and e ydv  . So 
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This process can be continued to any positive integer n , if needed. 
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Let's use the definitions  2 2 2
0A r R a  , 2
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Define z A Bx  . Then  2x z A B   and 2dx z dz B  . The integral becomes 
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Integral 
Find 
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Again take  2 2 2
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We don't need any tricks here. The result is 
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