NANO 705-Notes

Hydrogen molecular ion

An appropriate basis
Molecular hydrogen is held together by covalent bonds. In fact, two hydrogen nuclei can remain bonded

by a single electron in the H, molecular ion. The electron is shared by both protons, which are repelled
from each other.
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The electron wave function can be solved exactly using elliptical coordinates, which are quite
cumbersome. We will show that a stable solution (with positive binding energy) is formed by a linear
combination of the ground-state orbitals associated with each proton separately. Our goal is to establish
the use of convenient basis states from which we can construct an approximate solution to a related
problem of interest.

Formulation

The total energy relevant to the formation of the molecule includes the kinetic energy of the electron, the
electrostatic potential energy between the electron and each proton, and the electrostatic repulsion
between the protons. The hamiltonian is then
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We use the H-atom ground-state orbitals as our basis functions. If the atom is centered at the origin, the
wave function is
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In the molecule, we have one orbital centered around each nucleus
- (r)=9¢(r¥R/2|)

The hamiltonian for each isolated atom is

2
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H, =~ v2 .U (IrR/2
£= o (Ir¥R/2))

Our basis consists of eigenfunctions of these separate hamiltonians
Hi¢i (I’) = _EO : ¢ir (r)

We will write the wave function for the molecule ion as
y(r)y=c,¢.(r)+co_(r)

This can be written in the ¢.. basis as

C,
m&=(aj

Basis functions
Let's look at the representation of a state in particular basis. We have

|\|’>:zncn|¢n>

Consider the expectation value

c (ylFly) X, onColon[H100)

wlv) > CaColdm|dn)

Identify the matrix elements in this basis: [H],,, = (¢n | H|¢,) and [S],, = (0| dn).
£ HIy)
) [S]{w}

Foragiven [H] and [S], we can find the {y} satisfying [H]-{y}=E-[S]-{w} . In this case, the

expectation value is also the eigenvalue of [S]™-[H], i.e.,

[ST*-[H]-{y}=E-{y}

These wavefunctions and their energies are not the eigenfunctions and eigenvalues of the actual
hamiltonian, but provide a useful orthonormal set constructed from our selected basis functions.

Normalization
We can include a normalization constant in our wave function
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|\V>=%zncn|¢n>

If we want our wave function to be normalized, we need

1 *
I=(yly)=—5D"  Cn Co{Om|bn)
|z ="

SO
1ZF =Y, G [STon Co = Lyd [STy)
Within an arbitrary phase constant

Z =iy} [STHw}

Solution
For the problem at hand

[H]:£<¢+'ﬁ'¢+> <¢+|H‘|¢>]
(0-1H19.) (o IH$)
and
(o 1os) (e loo)
[S]_(<¢|¢+> <¢|¢>j
We can write
A A q° A q’
H_H,+U+(r)+4n80 _H++U,(r)+4n80R

Let's first write the elements of [S] as

SR

The diagonal elements in [H ] are

S _ ~ _ ~ q2
(- IH o-)(=(¢. IH |¢+>)—<¢+ |H, +U_(r)+ p |¢+>

2

z[_EO+4T?SORj<¢+ 6.0+ (6. U ()] 0.)

2

=—E, + +a(R)

TEQ

and the off-diagonal elements are
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~ _ ~ _ ~ q2
(0. [Ho-)(=(¢-IH |¢+>)—<¢ [Ho+U-(N+ |¢+>
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[—Eo + - RJ-S(R)+b(R)
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We can abbreviate

2

C= _EO + q
4dre,

R+a(R)

2

d:(_Eo‘F q
4

TEy

Rj-S(R)+b(R)

s=5(R)

giving

(ST [H] 1 (c—sd d—sc)

“1-s?\d-sc c-sd
To solve the eigenvalue problem, we take
det([S]"-[H]-E[1])=0

which becomes

c—sd_ d-sc
2 2

det 1-s 1-5s -0

d-sc c—sd_

1-¢° 1-s?

The eigenvalues are

c—d_E
E_c—sdJ_r(d—sc)_ 1-s "

= —5 =
1-s c+d:EB
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Notice

2

€0
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c+d_[ E0+471 R) [1+s(R)]+a(R)+b(R)

and

2

T sl aR-b(R)

TEg

So our eigenvalues are

Ex(R)=—E, +— & 2(R)=D(R)
’ ° " 4R 1-s(R)

E,(R)=—E,+ %, 2(R)+D(R)
i *4ng,R T 1+5(R)

Wave functions
To find the wave functions for each eigenvalue, write

[S]il [H]{was}=Enp -{was}

These give
1 (c—sd d—sc) (C+j_c$d (gj
1-s*> \d=sc c-sd)lc. ) 17s \c
These give

1 1
Wae)= g (ilj

The normalization constants are

oL, T

1

The wave functions are then

1 _
Yas(r) —m‘[dﬁ (Ir-R/2))Fo(Ir + R/2))]

Evaluation
We will need to perform the integrals for a(R), b(R), and s(R) to interpret these results. First
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a(R)=(¢_ U, (r)9-)

:J‘dsr( 1 j.[_qz J 1 - 2r+R/2/20
n-a, ) \4neg, ) [r-R/2|

r

2

—-q 3
a(R)=————-|d
( ) 4717280-803 '!‘

X e—2r/a0

r———
r-R|

We can choose to orient R along the z axis. Then do the ¢ integral.

— 2 o0 T
a(R)=L3- dr-rz-e’zr/"“j do-sino- !
2ney -ay° °r0 6=0 Jr? + R? — 2rRcos @
We showed that
_fn do-sin@- 1 _I+R-Ir=R]
0=0 Jr? + R —2rRcos 0 rR

We can break the r integral into the ranges r <R and r >R

p— 2 o0
a(R)= . 3 Kij " dror2.ete dr-r-ez'/a“}
TEo - Qg R r=0 r=R

Let's define oo =2/a, and y =ar . Finally

q UaZdy-yz-e‘y+ocR-_[;Rdy-y-e‘y}

nEo 80 0 R LI
A2
a(R)=—1 -[1—(1+5j-e-2%°}
AmegR a
Next we find the "exchange" integral

b(R)=(¢. [U.(r)1¢-)

_ jd%( 1 ),[—qz) 1 Rz
n-a, ) \4neg, ) [r-R/2|

r

a(R)=

A2
b(R) = — . [dr e
ant €y o

r

We again choose to orient R along the z axis and do the ¢ integral.

_q2 » - —\/r2+R2—2chose/a0
b(R)=———-[" dr-r’-e” " do-sino-
2neg -8y =0 6=0 Jr? + R* - 2rRcos 0

The second integral gives

x —«/r2+R2—2chose/aD a 2
j do-sin6- — _L( —(r+R)/ag _e—\r—R\/ao)
=0 Jr2+R?-2rRcos® IR

Again splitting the integral into two ranges
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_q2 R —(r+R)/ H r *© -2r/ . R
b(Ry=————-|| dr-r-e ®.sinh| — |+ | dr-r-e"® .sinh| —
ngO‘R'aO r=0 a, r=R a

2
b(R)=—1 -(1+5j-eR/a°
Arne, - Qo

Lastly, we address the "overlap" integral
s(R)=(¢.1¢-)
- jd3r( 1 j.e—<r—R/2+r+R/z>/ao
o \ma
1

— . J.d3r . e’(rJr‘r*RD/aO
- a03

r

S(R)=-2-[ dr-r?.e [* do.sing-e W 2mesln
a,° o 0=0

Let's do the O integral.

pa— 2 _
j de_sine_e—\/r2+R2—2chose o _ o [(1+ r+ Rj_e(HR)/ao _[1+ |r Rl)'erR/ao:i
e R a ay

We can then break the r integral into three terms:

a2
Sl(R)=is‘f dr-r?.e”" [i-(uﬂ)-e‘(”m/%}
dg r=0 rR dy

2 p—
SZa(R):ia_J'R dr-r2.e "% |:a.;.(1+u)'e(Rr)/ao:|
8 70 rR A

2 —
Szb(R):—23 I dr-r2.e " a';-(l+ r Rj_e—(r-rz)/a0
8"~ =R rR a

where s(R)=5,(R)+5,,(R)+5Sx (R). These give

1 ao) -R/ao
R)=—| =+— |-
s:(R) (2 5

2
S2a (R) =(E+R—2)'eR/""°
QH 3a

SZb(R)=@+%).eR/ao

The final result for the overlap integral is
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Bound state

Now we can investigate whether a bound state ( E < —E, ) exists for either the E, or Eg solutions at some
value of R and use the variational principle to minimize the total energy. Plotting these quantities shows
that only the symmetric ( Eg) solution has a minimum energy lower than that of an isolated, neutral H
atom and distant proton. Using these basis functions, the optimal separation of the protons is 0.132 nm
and the ground-state energy is -15.37 eV. That can be taken as an upper limit on the actual ground-state
energy, which will always be lower than the expectation value found from an approximate solution.

Ez(R)

Now we can plot the wave functions v, and g, referred to as the anti-bonding and bonding orbitals,
respectively, for the optimal nucleus separation R, (which is, in fact, applicable only to y5.)

probability amplitude (A.U.)

x (nm)

We see that y, has a node at the midpoint between the nuclei, whereas g does not.
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Integrals
Find

I, =.|‘ydy'yn e’
where neZ". It is easy to see that
lo= jy dy-e”’ =—e”’
What is I, ? We can integrate by parts: Iu -dv=u -V—Iv-du ,using u=y and v=-e’. Then du=dy
and dv=e™.So
L=-y-e’+ly=—(y+1)-e”’
Now find I,: Take u=y? and v=—e". Then du=2y-dy and dv=e’. So
l,=—y?-e” +2l,=—(y* +2y +1)-¢”
This process can be continued to any positive integer n, if needed.

Integral

|=f“desme- !
0=0

Jr? +R? —2rRcos 0

Define x=—-c0s0, dx=d0-sin® and A=r*+R?, B=2rR.

=[x
o
1

:%-VA+BX
2
B

x=-1

(JA+B—JA—BQ

:i-(x/r2 +R2+2rR —Vr? + R? —2rR)
rR

_r+R—|r—R]
- rR
1 1 ‘1 1
=t ——|———
R r IR r
| 2/r, r<r
_{yR, R<r
Integral
Find

I :J.T[ de_sine_e—\/r2+R2—2chose
0=0



NANO 705-Notes

Let's use the definitions A=(r”+R?)/a,>, B=2rR/a,’

dx-e

x=-1

| :J'l ~ATBX
Define z=vA+Bx . Then x=(z’ - A)/B and dx=2z-dz/B. The integral becomes

2 2 _
IZEL dz-z-e
:—é-(zﬂ)-e‘2|Z

2 (VAT Bx+1).e
B x=-1

| = _a_oz. [(ﬂ +1j . e‘(r+R)/aO _ (m +1j . e_‘r‘R‘/aO :|
rR ay a,

Integral
Find

1

. e—«/r2+R2—2chose/ao a2
| :J‘ do-sin6- :_L( —(r+R)/ag _e—\r—R\/ao)
0=0 Jr2+R2—2rRcos® 'R

Againtake A=(r’+R*)/a’, B=2rR/a,.

—VA+Bx

| =J‘1 dxe—

We don't need any tricks here. The result is
—v A+Bx
=[x
=1 JA+BX

' — __Z(e_m —
x=-1 B

zje_m
B

2
aL(e—(H'R)/ao _e—\r—R\/ao)

rkR

e—\/fB )

10



