NANO 705-Notes

Multielectron picture

Multielectron energy levels

Let's assume the total electron energy for N electrons in a particular energy level of a nanostructure is
the sum of a core energy & for each electron with the total electrostatic repulsion between each pair of
electrons and the potential energy U, = qV, due to an applied gate voltage with respect to the source:

E(N)=N-8+Ug(N)-N-U_

Let's assume the electrostatic repulsive energy among electrons in a nanostructure is the same value U,
for every electron pairs. Summing over all pairs gives

Uee(N)=Ug- D" (n-1)=U, Sy
where

Sw :Z::l(n—l) :Z:‘:1N _Zrlj:i(N —n+1)
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So 2Sy =N’-N and Sy =N-(N-1)/2. Now

U, (N)= L (N=D

The function E(N) has a minimum at a positive value of N if U_>&-U,/2.
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The energy to decrease the number of electrons from N to N —1, called the ionization level, is
e)=E(N)-E(N-1)=8+(N-1)-U,-U_

The energy to increase the number of electrons from N to N +1, called the affinity level, is
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S(I\T) :E(N +1)—E(N)=§+N 'UO_UL

Clearly €\’ =€\, Let us then refer only to the ionization levels for simplicity, i.e.

en = S(I\I) = 8(N+21

Solution
Equilibrium between a source contact and the channel can be considered a microscopic steady-state
condition. That is, the rate at which electrons enter the channel from the source is proportional to the

fraction of filled source levels at energy ¢y (the N —1 affinity level) times the probability that the
channel contains only N —1 electrons, while the rate at which electrons enter source from the the channel
is proportional to the fraction of empty source levels at energy &y (the N ionization level) times the
probability that the channel contains N electrons. Assuming the electron transfer process is reversible,
the rate constants for either process should be equal, so

/' fo(en —u)~PN_1=/~[1— fo(en —1)]- Py
Now we can find the ratio

Py _ fo(en —p)
PN—l 1_ fo (SN _H)
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Define

XN — e(EN —p)/KT

Then
1
g, = Jntl _ Ll e
-t %
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We see that
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Then
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PO n=1

Observe that

S (60 —w)/KT =30 [E+(N ~1)-Ug —p]/kT
= —[E(N)=N-u]/KkT

So
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This allows us to find the average number of electrons in the channel
(N)=>"" N-R,
We know that
2P =l
So
1
NOR R

Which gives

So
@ [E(N)-NJ/kT
PN - N £
S grIEm AT
n=0

Now we can write

st N - @ [E(N)-N-w/kT
N=0

Ne [E(N)-N-u]/kT
DI

(N=Y" N-Py =

This is suitable for exact computation of (N} within our model. Once we have determined {N), we can
find the energy level using

(NY=N, - fo(e—p)

which gives

N
=kt oan(Ne g
e n((N) )

Interpretation

At typical temperatures and biases, when the level is partially filled, the difference & —p will be quite
small. A simple estimate of (N in these conditions be obtained by finding the most probable value of
N, that is, find N” where exp{-[E(N")-N" 'u]/kT} is a maximum. If Uy > KT , the probability
distribution will be sharply peaked.
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Notice that

2 g [ 2 g
oN oN

Applying this gives

0 o TE)-NalT
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We can write with some generality

GE(N) . Uu(N)_

U,
oN oN

We define a self-consistent-field energy as
(n-Y)u,
N 2

§+USCF(N*)_UL_MZO

OUe

U%F(N): N

This gives

Under the conditions where this approximation is valid, the energy level is very near the Fermi level, so
we can estimate the energy level as

*

€ :§+USCF(N*)_UL
In particular,
* ~ * 1
€ :8+(N —E)'UO—UL

which gives the estimate
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Let's say that when the channel is neutral, the level contains N electrons.
pre@=g+Ugr (N?)-UY

When we decouple the channel from the source (without changing its charge) and remove the gate
voltage, the chemical potential in the channel moves to p® =p+U? . But the channel charge stays the

same, so the energy level is at £ ~pu'® . We then know the energy level in the isolated, neutral channel

8(0) :§+USCF(N(O)):é‘f‘(N(o)_%)'Uo

Although we calculated this in the continuous limit, it is a useful reference for analyzing the energy levels
in the channel in the discrete case. A comparison of the number of channel electrons with varying gate
voltage is plotted below (N, =4 ,N©® =2 U, =0.50eV, C, =0.9, u® —p, =0.9 eV, u, =0). The
variation of the energy levels with gate voltage is also shown. Plotting these energies vs. the number of
channel electrons shows that the single-electron energy levels computed in the multielectron picture shift
each time the number of electrons in the channel changes. However, the energy level ¢ is pinned very
close to the chemical potential during charging.
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The single-electron energy levels also allow a simpler description of the above behavior that provides a
good estimation of quantities in the full multielectron picture, assuming U, > KT . In this case, the
separation of the gy is much greater than kT , so we can can calculate the occupancy of each using the
Fermi function. Then

(N =" fo(en —p)
Notice that

1
fo(en —p)= 1

1+—
Sn
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Then
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In the multielectron picture, we had

<N>: Z:E=0(N ‘HL\LOSn)

Yo(TTeSn)

At some level of filling N , we have Sy >1 and Sy,; <1 (assuming U, > KT ), and the two expressions
above become equal. Notice that, if ey —u=0, then

N :1_(M)
Uo

But fo(en —p)=1/2, so we expect

(N)=N-=
2
This gives
<N>=1—(—‘§‘“‘UL)
2 Us

in agreement with the multielectron picture. A graphical depiction of the energy levels with increasing
gate voltage is shown below.
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