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Multielectron picture 

Multielectron energy levels 
Let's assume the total electron energy for N  electrons in a particular energy level of a nanostructure is 
the sum of a core energy   for each electron with the total electrostatic repulsion between each pair of 
electrons and the potential energy L gU qV  due to an applied gate voltage with respect to the source: 
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Let's assume the electrostatic repulsive energy among electrons in a nanostructure is the same value 0U  

for every electron pairs. Summing over all pairs gives 
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So 22 NS N N   and  1 2NS N N   . Now 

   
0

1

2
ee

N N
U N U

 
   

The function  E N  has a minimum at a positive value of N  if 0 2LU U   . 

 

The energy to decrease the number of electrons from N  to 1N  , called the ionization level, is 
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The energy to increase the number of electrons from N  to 1N  , called the affinity level, is 
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Clearly    
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 
   . Let us then refer only to the ionization levels for simplicity, i.e. 
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Solution 
Equilibrium between a source contact and the channel can be considered a microscopic steady-state 
condition. That is, the rate at which electrons enter the channel from the source is proportional to the 
fraction of filled source levels at energy N  (the 1N   affinity level) times the probability that the 

channel contains only 1N   electrons, while the rate at which electrons enter source from the the channel 
is proportional to the fraction of empty source levels at energy N  (the N  ionization level) times the 

probability that the channel contains N  electrons. Assuming the electron transfer process is reversible, 
the rate constants for either process should be equal, so 
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Now we can find the ratio 
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We see that  
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Observe that 
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So 
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This allows us to find the average number of electrons in the channel 
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Now we can write 
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This is suitable for exact computation of N  within our model. Once we have determined N , we can 
find the energy level using 

 0N N f     

which gives 
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Interpretation 
At typical temperatures and biases, when the level is partially filled, the difference    will be quite 

small. A simple estimate of N  in these conditions be obtained by finding the most probable value of 

N , that is, find *N  where    * *exp E N N kT    is a maximum. If 0U kT , the probability 

distribution will be sharply peaked. 
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Notice that  
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Applying this gives 
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We can write with some generality 
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We define a self-consistent-field energy as 
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This gives 
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Under the conditions where this approximation is valid, the energy level is very near the Fermi level, so 
we can estimate the energy level as 
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Let's say that when the channel is neutral, the level contains  0N  electrons.  
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When we decouple the channel from the source (without changing its charge) and remove the gate 

voltage, the chemical potential in the channel moves to    0 0
LU    . But the channel charge stays the 

same, so the energy level is at    0 0   . We then know the energy level in the isolated, neutral channel 
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Although we calculated this in the continuous limit, it is a useful reference for analyzing the energy levels 
in the channel in the discrete case. A comparison of the number of channel electrons with varying gate 

voltage is plotted below ( 4N  ,  0 2N  0 0.50 eVU  , 0.9LC  ,  0 0.9 eVs   , 0s  ). The 

variation of the energy levels with gate voltage is also shown. Plotting these energies vs. the number of 
channel electrons shows that the single-electron energy levels computed in the multielectron picture shift 
each time the number of electrons in the channel changes. However, the energy level   is pinned very 
close to the chemical potential during charging. 

 

The single-electron energy levels also allow a simpler description of the above behavior that provides a 
good estimation of quantities in the full multielectron picture, assuming 0U kT . In this case, the 

separation of the N  is much greater than kT , so we can can calculate the occupancy of each using the 
Fermi function. Then 
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Then 
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In the multielectron picture, we had 
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At some level of filling N , we have 1NS   and 1 1NS    (assuming 0U kT ), and the two expressions 

above become equal. Notice that, if 0N   , then 
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in agreement with the multielectron picture. A graphical depiction of the energy levels with increasing 
gate voltage is shown below. 

 


