Multielectron picture

Multielectron energy levels

Let's assume the total electron energy for N electrons in a particular energy level of a nanostructure is the sum of a core energy $\tilde{\varepsilon}$ for each electron with the total electrostatic repulsion between each pair of electrons and the potential energy $U_{L}=q V_{g}$ due to an applied gate voltage with respect to the source:

$$
E(N)=N \cdot \tilde{\varepsilon}+U_{e e}(N)-N \cdot U_{L}
$$

Let's assume the electrostatic repulsive energy among electrons in a nanostructure is the same value U_{0} for every electron pairs. Summing over all pairs gives

$$
U_{e e}(N)=U_{0} \cdot \sum_{n=1}^{N}(n-1)=U_{0} \cdot S_{N}
$$

where

$$
\begin{aligned}
S_{N} & =\sum_{n=1}^{N}(n-1)=\sum_{n=1}^{N} N-\sum_{n=1}^{N}(N-n+1) \\
& =N^{2}-\sum_{n=1}^{N} n=N^{2}-\left\{\left[\sum_{n=1}^{N}(n-1)\right]+N\right\} \\
S_{N} & =N^{2}-N-S_{N}
\end{aligned}
$$

So $2 S_{N}=N^{2}-N$ and $S_{N}=N \cdot(N-1) / 2$. Now

$$
U_{e e}(N)=\frac{N \cdot(N-1)}{2} \cdot U_{0}
$$

The function $E(N)$ has a minimum at a positive value of N if $U_{L}>\tilde{\varepsilon}-U_{0} / 2$.

The energy to decrease the number of electrons from N to $N-1$, called the ionization level, is

$$
\varepsilon_{N}^{(-)}=E(N)-E(N-1)=\tilde{\varepsilon}+(N-1) \cdot U_{0}-U_{L}
$$

The energy to increase the number of electrons from N to $N+1$, called the affinity level, is

$$
\varepsilon_{N}^{(+)}=E(N+1)-E(N)=\tilde{\varepsilon}+N \cdot U_{0}-U_{L}
$$

Clearly $\varepsilon_{N}^{(-)}=\varepsilon_{N-1}^{(+)}$. Let us then refer only to the ionization levels for simplicity, i.e.

$$
\varepsilon_{N}=\varepsilon_{N}^{(-)}=\varepsilon_{N-1}^{(+)}
$$

Solution

Equilibrium between a source contact and the channel can be considered a microscopic steady-state condition. That is, the rate at which electrons enter the channel from the source is proportional to the fraction of filled source levels at energy ε_{N} (the $N-1$ affinity level) times the probability that the channel contains only $N-1$ electrons, while the rate at which electrons enter source from the the channel is proportional to the fraction of empty source levels at energy ε_{N} (the N ionization level) times the probability that the channel contains N electrons. Assuming the electron transfer process is reversible, the rate constants for either process should be equal, so

$$
\nvdash \cdot f_{0}\left(\varepsilon_{N}-\mu\right) \cdot P_{N-1}=\not \not \cdot \cdot\left[1-f_{0}\left(\varepsilon_{N}-\mu\right)\right] \cdot P_{N}
$$

Now we can find the ratio

$$
S_{N}=\frac{P_{N}}{P_{N-1}}=\frac{f_{0}\left(\varepsilon_{N}-\mu\right)}{1-f_{0}\left(\varepsilon_{N}-\mu\right)}
$$

Define

$$
x_{N}=\mathrm{e}^{\left(\varepsilon_{N}-\mu\right) / k T}
$$

Then

$$
S_{N}=\frac{\frac{1}{x_{N}+1}}{1-\frac{1}{x_{N}+1}}=\frac{1}{x_{N}}=\mathrm{e}^{-\left(\varepsilon_{N}-\mu\right) / k T}
$$

We see that

$$
\frac{P_{N}}{P_{0}}=\frac{P_{N}}{P_{N-1}} \cdot \frac{P_{N-1}}{P_{N-2}} \cdots \frac{P_{1}}{P_{0}}=S_{N} \cdot S_{N-1} \cdots S_{1}
$$

Then

$$
\frac{P_{N}}{P_{0}}=\exp \left[-\sum_{n=1}^{N}\left(\varepsilon_{n}-\mu\right) / k T\right]
$$

Observe that

$$
\begin{aligned}
\sum_{n=1}^{N}\left(\varepsilon_{n}-\mu\right) / k T & =\sum_{n=1}^{N}\left[\tilde{\varepsilon}+(N-1) \cdot U_{0}-\mu\right] / k T \\
& =-[E(N)-N \cdot \mu] / k T
\end{aligned}
$$

So

$$
\frac{P_{N}}{P_{0}}=\mathrm{e}^{-[E(N)-N \cdot \mu] / k T}
$$

This allows us to find the average number of electrons in the channel

$$
\langle N\rangle=\sum_{N=0}^{N_{\varepsilon}} N \cdot P_{N}
$$

We know that

$$
\sum_{N=0}^{N_{\varepsilon}} P_{N}=1
$$

So

$$
\sum_{N=0}^{N_{\varepsilon}} \frac{P_{N}}{P_{0}}=\frac{1}{P_{0}}
$$

Which gives

$$
P_{0}=\frac{1}{\sum_{N=0}^{N_{\varepsilon}=\frac{P_{N}}{P_{0}}}}
$$

So

$$
P_{N}=\frac{\mathrm{e}^{-[E(N)-N \cdot \mu] / k T}}{\sum_{n=0}^{N_{\varepsilon}} \mathrm{e}^{-[E(n)-n \cdot \mu] / k T}}
$$

Now we can write

$$
\langle N\rangle=\sum_{N=0}^{N_{\varepsilon}} N \cdot P_{N}=\frac{\sum_{N=0}^{N_{\varepsilon}} N \cdot \mathrm{e}^{-[E(N)-N \cdot \mu] / k T}}{\sum_{N=0}^{N_{\varepsilon}} \mathrm{e}^{-[E(N)-N \cdot \mu] / k T}}
$$

This is suitable for exact computation of $\langle N\rangle$ within our model. Once we have determined $\langle N\rangle$, we can find the energy level using

$$
\langle N\rangle=N_{\varepsilon} \cdot f_{0}(\varepsilon-\mu)
$$

which gives

$$
\varepsilon-\mu=k T \cdot \ln \left(\frac{N_{\varepsilon}}{\langle N\rangle}-1\right)
$$

Interpretation

At typical temperatures and biases, when the level is partially filled, the difference $\varepsilon-\mu$ will be quite small. A simple estimate of $\langle N\rangle$ in these conditions be obtained by finding the most probable value of N, that is, find N^{*} where $\exp \left\{-\left[E\left(N^{*}\right)-N^{*} \cdot \mu\right] / k T\right\}$ is a maximum. If $U_{0} \gg k T$, the probability distribution will be sharply peaked.

Notice that

$$
\frac{\partial}{\partial N} \mathrm{e}^{f(N)}=\left[\frac{\partial}{\partial N} f(N)\right] \cdot \mathrm{e}^{f(N)}
$$

Applying this gives

$$
\left.\frac{\partial}{\partial N} \mathrm{e}^{-[E(N)-N \cdot \mu] / k T}\right|_{N=N^{*}}=\left.\left\{\left[\frac{\partial E(N)}{\partial N}-\mu\right] \cdot \mathrm{e}^{-[E(N)-N \cdot \mu] / k T}\right\}\right|_{N=N^{*}}=0
$$

We can write with some generality

$$
\frac{\partial E(N)}{\partial N}=\tilde{\varepsilon}+\frac{\partial U_{e e}(N)}{\partial N}-U_{L}
$$

We define a self-consistent-field energy as

$$
U_{S C F}(N)=\left.\frac{\partial U_{e e}}{\partial N}\right|_{N}=\left(N-\frac{1}{2}\right) \cdot U_{0}
$$

This gives

$$
\tilde{\varepsilon}+U_{\text {SCF }}\left(N^{*}\right)-U_{L}-\mu=0
$$

Under the conditions where this approximation is valid, the energy level is very near the Fermi level, so we can estimate the energy level as

$$
\varepsilon^{*}=\tilde{\varepsilon}+U_{\text {SCF }}\left(N^{*}\right)-U_{L}
$$

In particular,

$$
\varepsilon^{*}=\tilde{\varepsilon}+\left(N^{*}-\frac{1}{2}\right) \cdot U_{0}-U_{L}
$$

which gives the estimate

$$
\langle N\rangle=N^{*}=\frac{1}{2}-\left[\frac{(\tilde{\varepsilon}-\mu)-U_{L}}{U_{0}}\right]
$$

Let's say that when the channel is neutral, the level contains $N^{(0)}$ electrons.

$$
\mu \approx \varepsilon^{\prime(0)}=\tilde{\varepsilon}+U_{\text {SCF }}\left(N^{(0)}\right)-U_{L}^{(0)}
$$

When we decouple the channel from the source (without changing its charge) and remove the gate voltage, the chemical potential in the channel moves to $\mu^{(0)}=\mu+U_{L}^{(0)}$. But the channel charge stays the same, so the energy level is at $\varepsilon^{(0)} \approx \mu^{(0)}$. We then know the energy level in the isolated, neutral channel

$$
\varepsilon^{(0)}=\tilde{\varepsilon}+U_{S C F}\left(N^{(0)}\right)=\tilde{\varepsilon}+\left(N^{(0)}-\frac{1}{2}\right) \cdot U_{0}
$$

Although we calculated this in the continuous limit, it is a useful reference for analyzing the energy levels in the channel in the discrete case. A comparison of the number of channel electrons with varying gate voltage is plotted below ($N_{\varepsilon}=4, N^{(0)}=2 U_{0}=0.50 \mathrm{eV}, C_{L}=0.9, \mu^{(0)}-\mu_{s}=0.9 \mathrm{eV}, \mu_{s}=0$). The variation of the energy levels with gate voltage is also shown. Plotting these energies vs. the number of channel electrons shows that the single-electron energy levels computed in the multielectron picture shift each time the number of electrons in the channel changes. However, the energy level ε is pinned very close to the chemical potential during charging.

The single-electron energy levels also allow a simpler description of the above behavior that provides a good estimation of quantities in the full multielectron picture, assuming $U_{0} \gg k T$. In this case, the separation of the ε_{N} is much greater than $k T$, so we can can calculate the occupancy of each using the Fermi function. Then

$$
\langle N\rangle=\sum_{N=1}^{N_{s}} f_{0}\left(\varepsilon_{N}-\mu\right)
$$

Notice that

$$
f_{0}\left(\varepsilon_{N}-\mu\right)=\frac{1}{1+\frac{1}{S_{N}}}
$$

Then

$$
\langle N\rangle=\sum_{N=1}^{N_{\varepsilon}}\left(\frac{1}{1+\frac{1}{S_{N}}}\right)=\frac{\sum_{N=1}^{N_{\varepsilon}}\left(1+\frac{1}{S_{N}}\right)}{\prod_{N=1}^{N_{\varepsilon}}\left(1+\frac{1}{S_{N}}\right)}
$$

In the multielectron picture, we had

$$
\langle N\rangle=\frac{\sum_{N=0}^{N_{\varepsilon}}\left(N \cdot \Pi_{n=0}^{N} S_{n}\right)}{\sum_{N=0}^{N_{\varepsilon}}\left(\Pi_{n=0}^{N} S_{n}\right)}
$$

At some level of filling N, we have $S_{N} \gg 1$ and $S_{N+1} \ll 1$ (assuming $U_{0} \gg k T$), and the two expressions above become equal. Notice that, if $\varepsilon_{N}-\mu=0$, then

$$
N=1-\left(\frac{\tilde{\varepsilon}-\mu-U_{L}}{U_{0}}\right)
$$

But $f_{0}\left(\varepsilon_{N}-\mu\right)=1 / 2$, so we expect

$$
\langle N\rangle=N-\frac{1}{2}
$$

This gives

$$
\langle N\rangle=\frac{1}{2}-\left(\frac{\tilde{\varepsilon}-\mu-U_{L}}{U_{0}}\right)
$$

in agreement with the multielectron picture. A graphical depiction of the energy levels with increasing gate voltage is shown below.

