			Qui2 2			
1) Pl	ease indicate answers by cl	early circling	the letter of your selection			
	ne function ψ is an eigenfu			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
i)	$\hat{X}\psi^2 = 2\psi$	ii)	$\hat{X}\psi = 1$	iii)	$\hat{X}\psi=\psi^*$	
iv)	$\hat{X}\psi = e^{i\psi}$	v)	$\hat{X}\psi = \psi ^2$		$\hat{X}\psi=2\psi$	
vii)	$\hat{X}\psi=\psi-1$	viii)	none of the above			
b) A	quantum-mechanical state	of constant en	ergy is an eigenfunction	of the follo	owing operator:	
i)	gregorian	ii)	hamiltonian	iii)	jacobian	
	lagrangian	v)	smithsonian	vi)	laplacian	
V11)	kevorkian	V111)	none of the above			
c) A	particle of mass m in the	following wav	e function does not have	kinetic ene	$\text{ergy } E = \hbar^2 k^2 / 2m :$	
i)	$A \cdot \sin(kx)$	ii)	$A \cdot e^{ikx}$	iii)	$A \cdot e^{-ikx}$	
iv)	$A \cdot \tan(kx)$	v)	$A \cdot \cos(kx)$	vi)	$A \cdot \cos(kx + \phi)$	
vii)	$A \cdot \sin(kx - \phi)$	viii)	none of the above			
	entify the following statem					
	·					
a) The finite difference method can be used to solve the Schrodinger equation by computer.						
b)	Separation of variables can allow reducing an <i>N</i> -dimensional problem into <i>N</i> separate problems.					
c)	The ground-state bin	The ground-state binding energy of an He ⁺ ion is <i>twice</i> that of a neutral H atom.				
d)	-	It is impossible to normalize the wave function for a particle in a box, because of the uncertainty in the particle's position.				
e)		The Bohr model of atoms explains why atoms of different elements have discrete, characteristic optical absorption and emission spectra.				

The self-consistent-field method can be used to estimate shifts in the electron energy levels of a nanomaterial, due to their mutual, electrostatic repulsion, as the number of electrons changes.