A two-state system has the energy eigenfunctions and fermi function shown below: state 1: $\Phi_1(x) = \sqrt{\frac{2}{L}} \cdot \cos(kx)$, $f_0(\varepsilon_1 - \mu) = \frac{1}{4}$ state 2: $\Phi_2(x) = \sqrt{\frac{2}{L}} \cdot \sin(kx)$, $f_0(\varepsilon_2 - \mu) = \frac{3}{4}$

1) Find the 1-D electron density n(x):

2) Write down the equilbrium density matrix $[\rho]$:

3) Find the average number $\langle N \rangle$ of electrons in the system.

4) The representation of an operator \hat{A} in this system is:

$$[\mathbf{A}] = \begin{pmatrix} -a & c \\ b & a \end{pmatrix}$$

Find an expression for the expectation value $\langle \hat{A} \rangle$.