1) Please indicate answers by clearly *circling* the letter of your selection.

a) The ground-state energy of a particle in a 1-D box of size *L* is approximately:

$$\varepsilon_1 = \frac{m}{m_c} \cdot \left(\frac{10 \text{ nm}}{L}\right)^2 \cdot (3.8 \text{ meV})$$

Now assume a 3-D box of size 5 nm×5 nm×5 nm. Using $m_c = (0.1) \cdot m$, estimate the ground-state energy.

- i) 0.0456 eVii) 0.114 eViii) 0.511 eViv) 0.152 eVv) 11.4 meVvi) 0.0259 eVvii) 0.456 eVviii) none of the choice
- vii) 0.456 eV viii) none of the above

b) The 1-D dispersion relation for electrons in a band is given by:	
$E(k) = \frac{\hbar^2}{2m} \cdot \left(3 + 4k^2\right)^2$	

Find the effective mass for electron in the band.

i)	m/4	ii)	<i>m</i> /12	iii)	<i>m</i> /3
iv)	m	v)	m/24	vi)	<i>m</i> /6
vii)	<i>m</i> /7	viii)	none of the above		

2) Identify the following statements as true or false (T/F): Additional justification may be added to clarify your answers.

- a) ____ All of the outer-shell electrons of carbon atoms in graphene are used to form sp^2 among neighboring atoms, so there are no electrons available for electrical conduction without additional doping.
- b) ____ Near the reciprocal-space point $(0, 2\pi/3b)$ for graphene, the kinetic energy of electrons varies as $\hbar^2 k^2/2m^*$, where k is the reciprocal-space distance from this point and m^* is the effective mass.
- c) ____ The density of states for a quantum dot consists of discrete delta functions in energy.
- d) _____ A quantum wire can never form subbands, since there is no electron confinement along the wire axis.
- e) _____ All armchair carbon nanotubes are metallic ($E_g = 0$).
- f) ____ The bandgap of semiconducting, zig-zag nanotubes increases with increasing diameter d.