1) Please indicate answers by clearly circling the letter of your selection.
a) The ground-state energy of a particle in a 1-D box of size L is approximately:

$$
\varepsilon_{1}=\frac{m}{m_{c}} \cdot\left(\frac{10 \mathrm{~nm}}{L}\right)^{2} \cdot(3.8 \mathrm{meV})
$$

Now assume a 3-D box of size $5 \mathrm{~nm} \times 5 \mathrm{~nm} \times 5 \mathrm{~nm}$. Using $m_{c}=(0.1) \cdot m$, estimate the ground-state energy.
i) 0.0456 eV
ii) 0.114 eV
iii) 0.511 eV
iv) 0.152 eV
v) 11.4 meV
vi) 0.0259 eV
vii) 0.456 eV
viii) none of the above
b) The 1-D dispersion relation for electrons in a band is given by:

$$
E(k)=\frac{\hbar^{2}}{2 m} \cdot\left(3+4 k^{2}\right)^{2}
$$

Find the effective mass for electron in the band.
i) $m / 4$
ii) $m / 12$
iii) $m / 3$
iv) m
v) $m / 24$
vi) $m / 6$
vii) $m / 7$
viii) none of the above
2) Identify the following statements as true or false (T/F):

Additional justification may be added to clarify your answers.
a)

All of the outer-shell electrons of carbon atoms in graphene are used to form $s p^{2}$ among neighboring atoms, so there are no electrons available for electrical conduction without additional doping.
b) __ Near the reciprocal-space point $(0,2 \pi / 3 b)$ for graphene, the kinetic energy of electrons varies as $\hbar^{2} k^{2} / 2 m^{*}$, where k is the reciprocal-space distance from this point and m^{*} is the effective mass.
c) __ The density of states for a quantum dot consists of discrete delta functions in energy.
d) _ A quantum wire can never form subbands, since there is no electron confinement along the wire axis.
e)__ All armchair carbon nanotubes are metallic $\left(E_{\mathrm{g}}=0\right)$.
f)__ The bandgap of semiconducting, zig-zag nanotubes increases with increasing diameter d.

