
1 
Nanomaterials for Photovoltaics (v11) 

3. Semiconductors 

Silicon 
The material most widely associated with photovoltaics is silicon, and its well-established properties are 
often the reference from which those of other PV materials are drawn. Silicon is a group-IV, tetravalent 
metalloid, inert, grey solid, with a high melting point (1400 ºC), a chemical analog to carbon. The four 
valence electrons of both Si and C make these elements compatible with tetrahedral coordination.by 
arrangement in the diamond structure.  

 

Pure Si has the diamond crystal structure of carbon, comprised of  two interpenetrating face-centered 
cubic (fcc) lattices, with cubic lattice parameter 0.54 nma  , both occupied by Si atoms, but separated 
by 1 4  the cube diagonal. Tetrahedral bonds associate each atom in a sublattice to the four nearest 

neighbors in the other sublattice. 

Tetrahedral bonding 
Building from the core of a neon atom, a pair of spin-opposite electrons are first added to the 3s level, 
followed by two electrons in the 3p levels, which are spin aligned, according to Hund's rule.  

 

Hybridization by linear combination of the 3s/3p atomic orbitals can be used to form four molecular 
orbitals with minimal overlap that can be associated with a tetrahedron inscribed in a cube. Whereas the 
hybridized levels have higher energy for isolated atoms, they result in an overall reduction in energy in 
the solid by forming tetrahedral bonds. 

 

The MO wave functions are constructed from linear combinations of these four orbitals equally weighted.  
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1 1 1 1

2 2 2 2x y zs p p p          

From the eight distinct possibilities generated from the various sign combinations, four can be selected to 
form a tetrahedral arrangement around any particular atom. 

Origin of bandgap 
Isolated molecules typically have a highest-occupied molecular orbital  (HOMO) and a lower-unoccupied 
molecular orbital (LUMO). When a pair of such molecules interact closely, the MOs hybridized further. 
The energy levels repel each other, so there will be a somewhat smaller difference between the empty and 
filled orbitals. If we imagine repeating this process with an infinitely large number of molecules, the 
HOMO and LUMO will form continuous bands, called the valence band (VB) and conduction band (CB). 
separated by the bandgap energy gE .  

 

A bandgap exists when the density of states  D E  in material is zero over some energy range. The 

bandgap is particularly important when states below the gap are primarily filled with electrons and those 
above the gap are  primarily empty. We often categorize materials by their gE . 

 insulator: gE kT , g 3 eVE    

 semiconductor: g0.5 eV 3 eVE    

 semi-metal: g0 0.5 eVE    

 metal: no gE  

Bloch’s theorem 
Alternatively, one can construct the bands from continuous wave functions that span the entire solid, 
similar to the free electronic states. A useful formulation uses Bloch waves, in which the electron wave 
functions appear as the product of plane waves with so-called Bloch functions,.  

    2e iu     k rr r  

 The Bloch functions have the periodicity of the crystal: 

   u u r R r  
where 1 1 2 2 3 3n n n     R a a a  is a direct lattice vector of the crystal. Then  
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       2 2e ei iu           k r R k Rr R r R r  

The only effect of translation by a lattice vector is a change in phase of the electron wave function. 

1-D sinusoidal potential 
The allowed electronic energies are the eigenvalues corresponding to solutions of the Schrodinger 
equation. In 1-D: 

      
2 2

22

d
qV x x E x

m dx
       


 

The solutions can be written as: 

     2e ikxx b x     

where the  b x  are the Bloch functions. Their periodicity allows us to write them as Fourier series: 

   2e inx a
nn

b x b     

For example, consider the potential: 

     0
1

1 cos 2
2

U x U x a       

For simplicity, the average potential is zero in this case. 

 

The computational solution of the Schrodinger equation consists of continuous bands. The dispersion 
relation  E k  contains all of the information about which energy levels are present in the crystal. We 

generally translate the wavenumbers back into the 1st Brillouin zone, which extends from a k a    . 
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Notice that there are gaps between the bands with energies below the barrier height ( 0E  ). Above the 
barrier, there are no gaps between the bands. 

The optoelectronic properties of semiconductors arise from more than just the distinction by bandgap. 
Electrical conductivity in semiconductors can be dramatically influenced by doping, temperature, and 
illumination. These variations are exploited to enable control of electrical conduction for numerous 
electronic applications. 

1-D sinusoidal potential: wave functions 
We have a continuous spectrum of energy levels in the solid. The corresponding Bloch waves are, in 
general, complex, but it might be helpful to plot the intensity (magnitude squared) for a few simple cases. 
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Notice that, for the bound states ( 0E  ) , the wave function has its maxima centered in the well regions, 
whereas for continuum states ( 0E  ), the wave function can have its maxima in the barrier regions. 

Band structure 
Bandgap is only one parameter describing the rather complex electronic structure of semiconductors. 
Semiconductor bandgaps are either direct or indirect, which refers to the alignment in crystal momentum 
space of the VB maximum and the CB minimum. For a direct-gap semiconductor, these are aligned in 
wave vector; for an indirect-gap semiconductor they are not aligned. The implication is that no change in 
crystal momentum is required for electronic transitions between the VB and CB. Thus, the transition may 
represent only a change in energy of an electron. That change in energy can occur by the absorption or 
emission of a photon which, as a massless particle, has negligible momentum. An indirect transition, on 
the other hand, requires concomitant momentum change, generally by the emission or absorption of a 
phonon. Sophisticated theoretical methods exist to compute the electronic bandstructures of crystalline 
solids, but a qualitative sense of the bandgap arises from a basic quantum mechanical description. 
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From  J. I. Pankove, “Optical Processes in Semiconductors”, Dover Publications, Inc., New York (1971). 

Electrons and Holes 
A semiconductor has a large number of primarily filled states in its VB separated by energy gE  from a 

large number of primarily empty states in its CB. An electron that fills a state in the CB can be considered 
an essentially free particle, which can carry electrical current through the crystal by virtue of its velocity 
and charge. Correspondingly, the absence an electron (negative charge) in the CB represents an imbalance 
in the net flow of charge in some direction (left). This is equivalent to the motion of a hole (positive 
charge) in the opposite direction (right). In the nomenclature of semiconductor, CB electrons and VB 
holes are collectively considered charge carriers, with equal significance and validity. 

 

time 
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Fermi-Dirac distribution 
We saw that the probability for occupation of an electron state in thermal equilibrium is given by the 
fermi function 

 
 

1

e 1F
F E E kT

f E E  


 

The equilibrium chemical potential is referred to in electronic materials as the fermi level FE . The 

occupation probability for an electron decreases from 50% as the energy of the state exceeds FE . 

However, FE  often lies within the bandgap, where  D E  of a pure semiconductor is zero. At  absolute 

zero temperature ( 0 K ), one expects the CB to be completely empty and the VB completely full. But at 
finite temperatures, the probability of thermally generated electrons in the CB and holes in the VB is non-
zero. 

 

Carrier concentrations (I) 
As for photons, the number of electrons per unit volume, per unit energy, are determined by the electronic 
density of states  D E  and the Fermi function. 

    F
dn

D E f E E V
dE

    

Again we use the number of states in a 3-D box with linear dimension L  having wavenumber in the range 
from 0 to k : 

  
 
 

3

3 3

3

4
2 83

1 3

k
N k k L

L

 
     

Carrier concentrations (II) 
Based on a qualitative understanding of the band structure, assuming the semiconductor has a direct gap 
at the gamma point, we can write the dispersion relations near the band edges as: 

 
2 2

CB C
C2

h k
E k E

m
   and  

2 2

VB V
V2

h k
E k E

m
    
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where the denominators contain the CB and VB effective masses, which can be evaluated using: 

 
2

CB2 2
0C

1 1

k

d
E k

m h dk 
  and  

2

VB2 2
0V

1 1

k

d
E k

m h dk 
    

Solving for  k E , we have: 

C
2 Cm

k E E
h

    and v
V

2m
k E E

h
    

Using the degeneracy 2g   for spin, the number of states above the CB band edge with energy CE E  is 

given by: 

 
 

 
3 2 3

3 2C
C C3

8 2

3

m L
N E E E

h


     

so, the CB DOS is found using: 

 
 

 
3 2 3

1 2C C
C C3

2 2dN m gL
D E E E

dE h


     

Carrier concentrations (III) 
The same approach is applied to the VB to the find the number of states V0E E . Dividing by volume 

gives the density of states in the CB and VB are: 

  
     

3 2
1 2C C

C C3 2

2
4

D E m
g E E E

L h
       

  
     

3 2
1 2V V

V V3 2

2
4

D E m
g E E E

L h
       

The concentrations per unit energy of electrons in the CB and holes in the VB are then : 

        C C F
dn

D E f E V g E f E E
dE

      
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          V V F1 1
dp

D E f E V g E f E E
dE

        

Carrier concentrations (IV) 
The Fermi function reduced to the (simpler) Boltzmann function is sufficient when the occupation 
probability is low. 

 

Also, notice that 

   

1 1
1

e 1 e 1F FE E kT E E kT  
 

 

Carrier concentrations (V) 
The density of electrons per unit energy in the CB under non-degenerate ( C FE E kT  ) conditions is 

   
 

     

F

F

3 2
1 2C

C2

3 2
1 2C

C2

2 1
4

e 1

2
4 e

E E kT

E E kT

dn m
E E

dE h

m
E E

h



 

   


    

 

The density of holes per unit energy in the VB under non-degenerate ( F VE E kT  ) conditions is 

   
 

     

F

F

3 2
1 2V

V2

3 2
1 2V

V2

2 1
4

e 1

2
4 e

E E kT

E E kT

dp m
E E

dE h

m
E E

h



 

   


    

  

Carrier concentrations (VI) 
Within the parabolic-band approximation, we can plot these concentrations as functions of energy for 
different values of FE . For a pure semiconductor the fermi level is usually near the center of the gap, and 

the material is called intrinsic. A shift downward of FE  increases p , but decreases n , and the material is 

called p-type. A shift upward of FE  increase n  and decreases p ; the material is called n-type. 
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Carrier concentrations (VII) 
We are often less concerned with the details of the carrier concentrations within the CB and VB than with 
the total concentrations within the bands, regardless of energy. In the case of the CB, 

     

 

C

F

3 2
1 2C

C2

3 2
C

C2

2
4 e

2
4

C

E E

E E kT

E E

dn
n dE

dE

m
E E dE

h

m
n I

h





  



 

     

  



   

where 

   F1 2
C C e

C

E E kT

E E
I E E dE

  


      

Likewise, in the VB 

     

 

V

V
F

3 2
1 2V

V2

3 2
V

V2

2
4 e

2
4

E

E

E E E kT

E

dp
p dE

dE

m
E E dE

h

m
p I

h



 



 

     

  



  

where 

   V
F1 2

V V e
E E E kT

E
I E E dE 


      

Carrier concentrations (VIII) 
We now evaluate the integral CI . Substituting 
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 1 2
CE E

x
kT


   

then 2
CE E kT x   , so 2dE kTx dx  . Now 

    2
F C Fe e eE E kT E E kT x       and    1 2 1 2

CE E kT x     
The integral is now simply: 

    2
C F3 2 2

C
0

2 e eE E kT x

x
I kT x dx

  


       

The definite integral is 

22

0
e

4
x

x
x dx

 




     

giving: 

   C F3 2
C e

2
E E kTI kT  

    

We have: 

     C F

3 2
3 2C

2

2
4 e

2
E E kTm

n kT
h

  
     

  

This allows a simple expression for the total concentration of CB electrons:  

 C F
C e E E kTn N     

using the ”effective” CB density of states: 

 3 2
C

C 2
2

2

m kT
N 


 

Carrier concentrations (IX) 
We can repeat the preceding for the VI . The result is 

   F V3 2
V e

2
E E kTI kT  

   

The total concentration of holes in the VB is 

 F V
V e E E kTp N       

in terms of the ”effective” VB density of states: 

 3 2
V

V 2
2

2

m kT
N 


 

It is sometimes useful to keep track of a reference “effective” DOS: 

 3 2
0 19 3

0 2
2 2.5 10  cm

2

m kT
N   


 

Then 

3 2
C

C 0
0

m
N N

m
   
 

 and 
3 2

V
V 0

0

m
N N

m
   
 
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Semiconductors (I) 
For non-degenerate semiconductors, only need to know the position of the fermi with respect to the band 
edges to find the carrier concentrations. This allows us to draw a simplified energy diagram that refers 
only to band-edge energies, showing energy vs. position. 

 

Semiconductors (II) 
With these forms, it is evident that the product of n and p is a constant for a given semiconductor in 
equilibrium, regardless of the individual concentrations: 

  gC V 2
C V C V

E kTE E kT
in p N N e N N e n           

→ g 2
C V

E kT
in N N e    

The quantity in  is the intrinsic carrier concentration, which is the concentration of electrons in CB and 

holes in VB, respectively, of a pure semiconductor in equilibrium. It leads to the alternative forms: 

 Fe iE E kT
in n   ,  Fe iE E kT

ip n    

which refer to the intrinsic energy, i.e., the Fermi level of the intrinsic (pure) semiconductor: 

C V C C V C

V V

3
ln ln

2 2 2 4
i

E E kT N E E kT m
E

N m

            
   

  

Notice that if C Vm m , then iE  is exactly in the center of the gap. In this case, if F iE E , then 

in p n   (i.e., the material is intrinsic).  

Semiconductors (III) 
It should be noted that the CB electrons are not truly free; they remain bound to the solid to maintain net 
charge neutrality. Somewhere above the CB edge is the vacuum level vacE , above which an electron is 

free of the solid: 

 

CE

VE

FE

v a cE


w
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As in metals, the minimum energy to free an electron with energy FE  is the work function w . For a 

semiconductor, w  is not a constant, but depends on the carrier concentration. A more useful, constant 

quantity is the energy to free an electron from the CB edge, called the electron affinity  : 

vac C vac V gE E E E E        

Using 

 C
C F ln

N
E E kT

n
     

V
F V ln

N
E E kT

p
     
 

  

In semiconductors, w  depends on doping.  

 C V
vac F ln lnw g

N N
E E kT kT E

n p
             
 

  

Semiconductor: Doping (I) 
When substituting B/P, called electron acceptors/donors, in pure Si, the dopant atom has one 
missing/extra valence electron:  

 

The dopant atom easily ionizes, by either accepting an electron (B) from the VB, or donating an electron 
(P) into the CB, leaving the ionized cores stationary in the lattice. 

Semiconductor: Doping (II) 
The Bohr model allows estimation of the ionization energy of a dopant. The effect of screening within the 
solid is incorporated into the Coulomb potential by substituting the permittivity 0  of free space with the 

permittivity   for the material. The usual Bohr radius is then modified accordingly: 

2 2
0 *

0 02 2
0

4 4
a a

m e me

 
  

 
  

where m  is the effective mass of the charge carrier. Recall that the ionization energy of H is the Rydberg. 

2

2
0 0

1 Ryd 13.6 eV
2m a

 



 

The ionization energy of the dopant atom can then be written as: 
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     
22

0

2*
00

1 Ryd
2

n
m

V
mm a

       


  

Semiconductor: Doping (III) 
The positions of the ionized dopant levels can be added to the electron energy diagram. Electron donors 
levels are shown at D C nE E V   , slightly below the conduction band. Acceptor levels are shown at 

A V pE E V  , slightly above the valence band. We can adopt the notation shown below to indicate 

whether a particular level is occupied. A donor level is unoccupied when it is ionized (it has donated an 

electron to the CB), leaving a concentration of  
DN    ionized donors. An acceptor level is occupied when 

it is ionized (it has accepted an electron from the VB), leaving a concentration of  
AN   ionized acceptors. 

 

Semiconductor: Doping (IV) 
Dopant atoms contribute to the electron and hole concentrations by ionization. Dopant levels indicated on 
the energy diagram convey the electron energies when the dopant atoms are neutral. This is the case, for 
example, at 0  KT  , when only a single dopant species is present.  

 

The carrier concentration in a doped semiconductor depends on various factors. With a single, shallow 
dopant, at 300 K, is often sufficient to start by assuming all shallow acceptors/donors are ionized, i.e., 

D FE E kT  ,  D F 0f E E  . For a material doped with DN  donors, this corresponds to Dn N  and 
2

Dip n N .The  offset of the Fermi level from the CB edge is then: 
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C
C F

D

ln
N

E E kT
N

     
 

  

For an acceptor concentration of AN , we usually start by assuming Ap N  and 2
Ain n N . The energy 

separation of Fermi level from the VB edge is then  

V
F V

A

ln
N

E E kT
N

     
 

 

Semiconductor: Doping (V) 
A diagram showing several ionization levels of impurities in Si is shown below [B. G. Streetman, Solid 
State Electronic Devices, 3rd Ed., Prentice Hall (1990)]. The most useful levels are doping are those close 
to the CB and VB edges. These are called shallow donors and acceptors. Those near the middle of the gap 
are called deep levels and generally act as recombination centers.  

 

Semiconductor: Doping (VI) 
We assumed the dopant levels were fully ionized, that is the ionization energy is essentially zero.  This 

gives  
D DN N  , so Dn N . Then find FE  using 

 C
C F ln

N
E E kT

n
    

It is sometime necessary to check this assumption. The separation of the donor level from FE is given by: 

     D F C F C D C F nE E E E E E E E V          
The fraction of donor states not ionized is then 

 
 D F

D F
1

e 1E E kT
f E E  


 

The concentration of ionized donors gives a corrected estimate of n  is then: 

    D D FD 1n N N f E E       

We can now compute a corrected FE  
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 ln C
C F

N
E E kT

n
    

This process is iterated to convergence. 

Semiconductor: Doping (VII) 
Similarly, for a material doped with AN  acceptors, we can start by assuming F AE E kT  , 
 F A 1f E E  , giving Ap N . Applying  

 V
F V ln

N
E E kT

p
     
 

  

Then 

      F A F V A V F V AE E E E E E E E V          
Using the revised the fraction  F Af E E  of acceptors that are not ionized, we obtain a corrected 

estimate of p : 

  A F Ap N f E E     

As before, we iterate to convergence. 

Semiconductor: Doping (IX) 
Consider the example of Si with P at 16 3

D 2 10  cmN   . The ionization energy is approximately 

0.044 eVnV  , and the electron effective mass is 0 1.1Cm m  . Then 19 3
C 2.9 10  cmN   . A first 

estimate, assuming complete ionization ( Dn N ), gives 0.188 eVC FE E  . Then 

     
D F 0.188 eV 0.044 eV 0.144 eVE E    . 

So the ionized fraction is reduced from 100% to  D F 99.6%f E E  . Now our best estimate is 
16 31.99 10  cmn   . Further iteration has practically no improvement, so our initial assumption is quite 

valid. 

Charge Density 
The total charge density in a region includes not only the mobile CB electrons and VB holes, but also the 
ionized dopants fixed within the lattice. Assuming single ionization of donors and acceptors, the  charge 
density becomes: 

              
D Ax p x n x N x N x        

We expect charge neutrality ( 0  ) in a uniformly doped region, with no external influence, so:  

 
   

a dn N p N     

The densities must satisfy:  

  Fe iE E kT
in n     and  Fe iE E kT

ip n     

The ionized dopant concentrations are 

 
    A A F A1N N f E E       and 

    D D D F1N N f E E       

To find FE , we can apply a simple algorithm:  

 If 
   

A Dn N p N    , increase FE   
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 If 
   

A Dn N p N    , decrease FE   
Charge Neutrality (I) 
If A 0N   and D iN n , then  

D DN N    

D Dn N p N   , 
2

D

in
p

N
   

Co-doping is when both acceptors and donors are present in the same region. If D A iN N n n    , we 

can still assume full ionization:  

D DN N   ,  

a aN N   However, AN  of the donated electrons serve to 

ionize (fill) the acceptor levels: Now  

 n n  , 
2

in
p n

n
 

   

This is called compensation. For example, assume 16 3
D 8 10  cmN    and 16 3

A 2 10  cmN   .  So 
16 3

D A 6 10  cmn N N     . 


